start towards #120

This commit is contained in:
Liam Brydon
2025-10-22 08:22:29 +13:00
parent 376fd65785
commit 2980a75daa
3 changed files with 53 additions and 24 deletions

View File

@ -6,6 +6,7 @@ from collections import defaultdict
from datetime import datetime
from pathlib import Path
from typing import List, Dict, Set, Tuple, TYPE_CHECKING
from abc import ABC, abstractmethod
import networkx as nx
import numpy as np
@ -26,7 +27,21 @@ if TYPE_CHECKING:
from epdb.models import Rule, CompoundStructure, Reaction
class Dataset:
class Dataset(ABC):
@abstractmethod
def X(self):
pass
@abstractmethod
def y(self):
pass
@abstractmethod
def __getitem__(self, item):
pass
class RuleBasedDataset(Dataset):
def __init__(
self, columns: List[str], num_labels: int, data: List[List[str | int | float]] = None
):
@ -78,18 +93,18 @@ class Dataset:
def observed(self) -> Tuple[int, int]:
return self._observed
def at(self, position: int) -> Dataset:
return Dataset(self.columns, self.num_labels, [self.data[position]])
def at(self, position: int) -> RuleBasedDataset:
return RuleBasedDataset(self.columns, self.num_labels, [self.data[position]])
def limit(self, limit: int) -> Dataset:
return Dataset(self.columns, self.num_labels, self.data[:limit])
def limit(self, limit: int) -> RuleBasedDataset:
return RuleBasedDataset(self.columns, self.num_labels, self.data[:limit])
def __iter__(self):
return (self.at(i) for i, _ in enumerate(self.data))
def classification_dataset(
self, structures: List[str | "CompoundStructure"], applicable_rules: List["Rule"]
) -> Tuple[Dataset, List[List[PredictionResult]]]:
) -> Tuple[RuleBasedDataset, List[List[PredictionResult]]]:
classify_data = []
classify_products = []
for struct in structures:
@ -117,14 +132,14 @@ class Dataset:
classify_data.append([struct_id] + features + trig + ([-1] * len(trig)))
classify_products.append(prods)
return Dataset(
return RuleBasedDataset(
columns=self.columns, num_labels=self.num_labels, data=classify_data
), classify_products
@staticmethod
def generate_dataset(
reactions: List["Reaction"], applicable_rules: List["Rule"], educts_only: bool = True
) -> Dataset:
) -> RuleBasedDataset:
_structures = set()
for r in reactions:
@ -231,7 +246,7 @@ class Dataset:
+ [f"trig_{r.uuid}" for r in applicable_rules]
+ [f"obs_{r.uuid}" for r in applicable_rules]
)
ds = Dataset(header, len(applicable_rules))
ds = RuleBasedDataset(header, len(applicable_rules))
ds.add_row([str(comp.uuid)] + feat + trig + obs)
@ -289,7 +304,7 @@ class Dataset:
pickle.dump(self, fh)
@staticmethod
def load(path: "Path") -> "Dataset":
def load(path: "Path") -> "RuleBasedDataset":
import pickle
return pickle.load(open(path, "rb"))
@ -319,6 +334,20 @@ class Dataset:
)
class EnviFormerDataset(Dataset):
def __init__(self):
pass
def X(self):
pass
def y(self):
pass
def __getitem__(self, item):
pass
class SparseLabelECC(BaseEstimator, ClassifierMixin):
"""
Ensemble of Classifier Chains with sparse label removal.
@ -598,7 +627,7 @@ class ApplicabilityDomainPCA(PCA):
self.min_vals = None
self.max_vals = None
def build(self, train_dataset: "Dataset"):
def build(self, train_dataset: "RuleBasedDataset"):
# transform
X_scaled = self.scaler.fit_transform(train_dataset.X())
# fit pca
@ -612,7 +641,7 @@ class ApplicabilityDomainPCA(PCA):
instances_pca = self.transform(instances_scaled)
return instances_pca
def is_applicable(self, classify_instances: "Dataset"):
def is_applicable(self, classify_instances: "RuleBasedDataset"):
instances_pca = self.__transform(classify_instances.X())
is_applicable = []