forked from enviPath/enviPy
[Feature] ML model caching for reducing prediction overhead (#156)
The caching is now finished. The cache is created in `settings.py` giving us the most flexibility for using it in the future. The cache is currently updated/accessed by `tasks.py/get_ml_model` which can be called from whatever task needs to access ml models in this way (currently, `predict` and `predict_simple`). This implementation currently caches all ml models including the relative reasoning. If we don't want this and only want to cache enviFormer, i can change it to that. However, I don't think there is a harm in having the other models be cached as well. Co-authored-by: Liam Brydon <62733830+MyCreativityOutlet@users.noreply.github.com> Reviewed-on: enviPath/enviPy#156 Co-authored-by: liambrydon <lbry121@aucklanduni.ac.nz> Co-committed-by: liambrydon <lbry121@aucklanduni.ac.nz>
This commit is contained in:
@ -3043,9 +3043,9 @@ class EnviFormer(PackageBasedModel):
|
||||
@cached_property
|
||||
def model(self):
|
||||
from enviformer import load
|
||||
|
||||
ckpt = os.path.join(s.MODEL_DIR, "enviformer", str(self.uuid), f"{self.uuid}.ckpt")
|
||||
return load(device=s.ENVIFORMER_DEVICE, ckpt_path=ckpt)
|
||||
mod = load(device=s.ENVIFORMER_DEVICE, ckpt_path=ckpt)
|
||||
return mod
|
||||
|
||||
def predict(self, smiles) -> List["PredictionResult"]:
|
||||
return self.predict_batch([smiles])[0]
|
||||
@ -3059,8 +3059,10 @@ class EnviFormer(PackageBasedModel):
|
||||
for smiles in smiles_list
|
||||
]
|
||||
logger.info(f"Submitting {canon_smiles} to {self.name}")
|
||||
start = datetime.now()
|
||||
products_list = self.model.predict_batch(canon_smiles)
|
||||
logger.info(f"Got results {products_list}")
|
||||
end = datetime.now()
|
||||
logger.info(f"Prediction took {(end - start).total_seconds():.2f} seconds. Got results {products_list}")
|
||||
|
||||
results = []
|
||||
for products in products_list:
|
||||
|
||||
@ -1,12 +1,19 @@
|
||||
import logging
|
||||
from typing import Optional
|
||||
|
||||
from celery.utils.functional import LRUCache
|
||||
from celery import shared_task
|
||||
from epdb.models import Pathway, Node, EPModel, Setting
|
||||
from epdb.logic import SPathway
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
ML_CACHE = LRUCache(3) # Cache the three most recent ML models to reduce load times.
|
||||
|
||||
|
||||
def get_ml_model(model_pk: int):
|
||||
if model_pk not in ML_CACHE:
|
||||
ML_CACHE[model_pk] = EPModel.objects.get(id=model_pk)
|
||||
return ML_CACHE[model_pk]
|
||||
|
||||
|
||||
@shared_task(queue="background")
|
||||
@ -16,7 +23,7 @@ def mul(a, b):
|
||||
|
||||
@shared_task(queue="predict")
|
||||
def predict_simple(model_pk: int, smiles: str):
|
||||
mod = EPModel.objects.get(id=model_pk)
|
||||
mod = get_ml_model(model_pk)
|
||||
res = mod.predict(smiles)
|
||||
return res
|
||||
|
||||
@ -51,6 +58,9 @@ def predict(
|
||||
) -> Pathway:
|
||||
pw = Pathway.objects.get(id=pw_pk)
|
||||
setting = Setting.objects.get(id=pred_setting_pk)
|
||||
# If the setting has a model add/restore it from the cache
|
||||
if setting.model is not None:
|
||||
setting.model = get_ml_model(setting.model.pk)
|
||||
|
||||
pw.kv.update(**{"status": "running"})
|
||||
pw.save()
|
||||
|
||||
Reference in New Issue
Block a user