[Feature] ML model caching for reducing prediction overhead (#156)

The caching is now finished. The cache is created in `settings.py` giving us the most flexibility for using it in the future.

The cache is currently updated/accessed by `tasks.py/get_ml_model` which can be called from whatever task needs to access ml models in this way (currently, `predict` and `predict_simple`).

This implementation currently caches all ml models including the relative reasoning. If we don't want this and only want to cache enviFormer, i can change it to that. However, I don't think there is a harm in having the other models be cached as well.

Co-authored-by: Liam Brydon <62733830+MyCreativityOutlet@users.noreply.github.com>
Reviewed-on: enviPath/enviPy#156
Co-authored-by: liambrydon <lbry121@aucklanduni.ac.nz>
Co-committed-by: liambrydon <lbry121@aucklanduni.ac.nz>
This commit is contained in:
2025-10-16 08:58:36 +13:00
committed by jebus
parent d5ebb23622
commit 376fd65785
3 changed files with 69 additions and 6 deletions

View File

@ -3043,9 +3043,9 @@ class EnviFormer(PackageBasedModel):
@cached_property
def model(self):
from enviformer import load
ckpt = os.path.join(s.MODEL_DIR, "enviformer", str(self.uuid), f"{self.uuid}.ckpt")
return load(device=s.ENVIFORMER_DEVICE, ckpt_path=ckpt)
mod = load(device=s.ENVIFORMER_DEVICE, ckpt_path=ckpt)
return mod
def predict(self, smiles) -> List["PredictionResult"]:
return self.predict_batch([smiles])[0]
@ -3059,8 +3059,10 @@ class EnviFormer(PackageBasedModel):
for smiles in smiles_list
]
logger.info(f"Submitting {canon_smiles} to {self.name}")
start = datetime.now()
products_list = self.model.predict_batch(canon_smiles)
logger.info(f"Got results {products_list}")
end = datetime.now()
logger.info(f"Prediction took {(end - start).total_seconds():.2f} seconds. Got results {products_list}")
results = []
for products in products_list: