forked from enviPath/enviPy
[Feature] ML model caching for reducing prediction overhead (#156)
The caching is now finished. The cache is created in `settings.py` giving us the most flexibility for using it in the future. The cache is currently updated/accessed by `tasks.py/get_ml_model` which can be called from whatever task needs to access ml models in this way (currently, `predict` and `predict_simple`). This implementation currently caches all ml models including the relative reasoning. If we don't want this and only want to cache enviFormer, i can change it to that. However, I don't think there is a harm in having the other models be cached as well. Co-authored-by: Liam Brydon <62733830+MyCreativityOutlet@users.noreply.github.com> Reviewed-on: enviPath/enviPy#156 Co-authored-by: liambrydon <lbry121@aucklanduni.ac.nz> Co-committed-by: liambrydon <lbry121@aucklanduni.ac.nz>
This commit is contained in:
@ -1,7 +1,27 @@
|
||||
from collections import defaultdict
|
||||
from datetime import datetime
|
||||
from tempfile import TemporaryDirectory
|
||||
from django.test import TestCase, tag
|
||||
from epdb.logic import PackageManager
|
||||
from epdb.models import User, EnviFormer, Package
|
||||
from epdb.models import User, EnviFormer, Package, Setting, Pathway
|
||||
from epdb.tasks import predict_simple, predict
|
||||
|
||||
|
||||
def measure_predict(mod, pathway_pk=None):
|
||||
# Measure and return the prediction time
|
||||
start = datetime.now()
|
||||
if pathway_pk:
|
||||
s = Setting()
|
||||
s.model = mod
|
||||
s.model_threshold = 0.2
|
||||
s.max_depth = 4
|
||||
s.max_nodes = 20
|
||||
s.save()
|
||||
pred_result = predict.delay(pathway_pk, s.pk, limit=s.max_depth)
|
||||
else:
|
||||
pred_result = predict_simple.delay(mod.pk, "C1=CC=C(CSCC2=CC=CC=C2)C=C1")
|
||||
_ = pred_result.get()
|
||||
return round((datetime.now() - start).total_seconds(), 2)
|
||||
|
||||
|
||||
@tag("slow")
|
||||
@ -33,3 +53,34 @@ class EnviFormerTest(TestCase):
|
||||
mod.evaluate_model()
|
||||
|
||||
mod.predict("CCN(CC)C(=O)C1=CC(=CC=C1)C")
|
||||
|
||||
def test_predict_runtime(self):
|
||||
with TemporaryDirectory() as tmpdir:
|
||||
with self.settings(MODEL_DIR=tmpdir):
|
||||
threshold = float(0.5)
|
||||
data_package_objs = [self.BBD_SUBSET]
|
||||
eval_packages_objs = [self.BBD_SUBSET]
|
||||
mods = []
|
||||
for _ in range(4):
|
||||
mod = EnviFormer.create(
|
||||
self.package, data_package_objs, eval_packages_objs, threshold=threshold
|
||||
)
|
||||
mod.build_dataset()
|
||||
mod.build_model()
|
||||
mods.append(mod)
|
||||
|
||||
# Test prediction time drops after first prediction
|
||||
times = [measure_predict(mods[0]) for _ in range(5)]
|
||||
print(f"First prediction took {times[0]} seconds, subsequent ones took {times[1:]}")
|
||||
|
||||
# Test pathway prediction
|
||||
times = [measure_predict(mods[1], self.BBD_SUBSET.pathways[0].pk) for _ in range(5)]
|
||||
print(f"First pathway prediction took {times[0]} seconds, subsequent ones took {times[1:]}")
|
||||
|
||||
# Test eviction by performing three prediction with every model, twice.
|
||||
times = defaultdict(list)
|
||||
for _ in range(2): # Eviction should cause the second iteration here to have to reload the models
|
||||
for mod in mods:
|
||||
for _ in range(3):
|
||||
times[mod.pk].append(measure_predict(mod))
|
||||
print(times)
|
||||
|
||||
Reference in New Issue
Block a user