forked from enviPath/enviPy
Merge remote-tracking branch 'origin/develop' into feature/frontend_update
This commit is contained in:
@ -7,6 +7,7 @@ from .models import (
|
||||
GroupPackagePermission,
|
||||
Package,
|
||||
MLRelativeReasoning,
|
||||
EnviFormer,
|
||||
Compound,
|
||||
CompoundStructure,
|
||||
SimpleAmbitRule,
|
||||
@ -50,6 +51,10 @@ class MLRelativeReasoningAdmin(EPAdmin):
|
||||
pass
|
||||
|
||||
|
||||
class EnviFormerAdmin(EPAdmin):
|
||||
pass
|
||||
|
||||
|
||||
class CompoundAdmin(EPAdmin):
|
||||
pass
|
||||
|
||||
@ -104,6 +109,7 @@ admin.site.register(Group, GroupAdmin)
|
||||
admin.site.register(GroupPackagePermission, GroupPackagePermissionAdmin)
|
||||
admin.site.register(Package, PackageAdmin)
|
||||
admin.site.register(MLRelativeReasoning, MLRelativeReasoningAdmin)
|
||||
admin.site.register(EnviFormer, EnviFormerAdmin)
|
||||
admin.site.register(Compound, CompoundAdmin)
|
||||
admin.site.register(CompoundStructure, CompoundStructureAdmin)
|
||||
admin.site.register(SimpleAmbitRule, SimpleAmbitRuleAdmin)
|
||||
|
||||
@ -26,6 +26,7 @@ from epdb.models import (
|
||||
Compound,
|
||||
Reaction,
|
||||
CompoundStructure,
|
||||
EnzymeLink,
|
||||
)
|
||||
from utilities.chem import FormatConverter
|
||||
from utilities.misc import PackageImporter, PackageExporter
|
||||
@ -617,6 +618,8 @@ class PackageManager(object):
|
||||
parent_mapping = {}
|
||||
# Mapping old scen_id to old_obj_id
|
||||
scen_mapping = defaultdict(list)
|
||||
# Enzymelink Mapping rule_id to enzymelink objects
|
||||
enzyme_mapping = defaultdict(list)
|
||||
|
||||
# Store Scenarios
|
||||
for scenario in data["scenarios"]:
|
||||
@ -648,9 +651,7 @@ class PackageManager(object):
|
||||
# Broken eP Data
|
||||
if name == "initialmasssediment" and addinf_data == "missing data":
|
||||
continue
|
||||
|
||||
# TODO Enzymes arent ready yet
|
||||
if name == "enzyme":
|
||||
if name == "columnheight" and addinf_data == "(2)-(2.5);(6)-(8)":
|
||||
continue
|
||||
|
||||
try:
|
||||
@ -740,6 +741,9 @@ class PackageManager(object):
|
||||
for scen in rule["scenarios"]:
|
||||
scen_mapping[scen["id"]].append(r)
|
||||
|
||||
for enzyme_link in rule.get("enzymeLinks", []):
|
||||
enzyme_mapping[r.uuid].append(enzyme_link)
|
||||
|
||||
print("Par: ", len(par_rules))
|
||||
print("Seq: ", len(seq_rules))
|
||||
|
||||
@ -757,6 +761,9 @@ class PackageManager(object):
|
||||
for scen in par_rule["scenarios"]:
|
||||
scen_mapping[scen["id"]].append(r)
|
||||
|
||||
for enzyme_link in par_rule.get("enzymeLinks", []):
|
||||
enzyme_mapping[r.uuid].append(enzyme_link)
|
||||
|
||||
for simple_rule in par_rule["simpleRules"]:
|
||||
if simple_rule["id"] in mapping:
|
||||
r.simple_rules.add(SimpleRule.objects.get(uuid=mapping[simple_rule["id"]]))
|
||||
@ -777,6 +784,9 @@ class PackageManager(object):
|
||||
for scen in seq_rule["scenarios"]:
|
||||
scen_mapping[scen["id"]].append(r)
|
||||
|
||||
for enzyme_link in seq_rule.get("enzymeLinks", []):
|
||||
enzyme_mapping[r.uuid].append(enzyme_link)
|
||||
|
||||
for i, simple_rule in enumerate(seq_rule["simpleRules"]):
|
||||
sro = SequentialRuleOrdering()
|
||||
sro.simple_rule = simple_rule
|
||||
@ -910,6 +920,39 @@ class PackageManager(object):
|
||||
|
||||
print("Scenarios linked...")
|
||||
|
||||
# Import Enzyme Links
|
||||
for rule_uuid, enzyme_links in enzyme_mapping.items():
|
||||
r = Rule.objects.get(uuid=rule_uuid)
|
||||
for enzyme in enzyme_links:
|
||||
e = EnzymeLink()
|
||||
e.uuid = UUID(enzyme["id"].split("/")[-1]) if keep_ids else uuid4()
|
||||
e.rule = r
|
||||
e.name = enzyme["name"]
|
||||
e.ec_number = enzyme["ecNumber"]
|
||||
e.classification_level = enzyme["classificationLevel"]
|
||||
e.linking_method = enzyme["linkingMethod"]
|
||||
e.save()
|
||||
|
||||
for reaction in enzyme["reactionLinkEvidence"]:
|
||||
reaction = Reaction.objects.get(uuid=mapping[reaction["id"]])
|
||||
e.reaction_evidence.add(reaction)
|
||||
|
||||
for edge in enzyme["edgeLinkEvidence"]:
|
||||
edge = Edge.objects.get(uuid=mapping[edge["id"]])
|
||||
e.reaction_evidence.add(edge)
|
||||
|
||||
for evidence in enzyme["linkEvidence"]:
|
||||
matches = re.findall(r">(R[0-9]+)<", evidence["evidence"])
|
||||
if not matches or len(matches) != 1:
|
||||
logger.warning(f"Could not find reaction id in {evidence['evidence']}")
|
||||
continue
|
||||
|
||||
e.add_kegg_reaction_id(matches[0])
|
||||
|
||||
e.save()
|
||||
|
||||
print("Enzyme links imported...")
|
||||
|
||||
print("Import statistics:")
|
||||
print("Package {} stored".format(pack.url))
|
||||
print("Imported {} compounds".format(Compound.objects.filter(package=pack).count()))
|
||||
|
||||
@ -7,10 +7,11 @@ from epdb.models import MLRelativeReasoning, EnviFormer, Package
|
||||
|
||||
class Command(BaseCommand):
|
||||
"""This command can be run with
|
||||
`python manage.py create_ml_models [model_names] -d [data_packages] OPTIONAL: -e [eval_packages]`
|
||||
For example, to train both EnviFormer and MLRelativeReasoning on BBD and SOIL and evaluate them on SLUDGE
|
||||
the below command would be used:
|
||||
`python manage.py create_ml_models enviformer mlrr -d bbd soil -e sludge
|
||||
`python manage.py create_ml_models [model_names] -d [data_packages] FOR MLRR ONLY: -r [rule_packages]
|
||||
OPTIONAL: -e [eval_packages] -t threshold`
|
||||
For example, to train both EnviFormer and MLRelativeReasoning on BBD and SOIL and evaluate them on SLUDGE with a
|
||||
threshold of 0.6, the below command would be used:
|
||||
`python manage.py create_ml_models enviformer mlrr -d bbd soil -e sludge -t 0.6
|
||||
"""
|
||||
|
||||
def add_arguments(self, parser):
|
||||
@ -34,6 +35,13 @@ class Command(BaseCommand):
|
||||
help="Rule Packages mandatory for MLRR",
|
||||
default=[],
|
||||
)
|
||||
parser.add_argument(
|
||||
"-t",
|
||||
"--threshold",
|
||||
type=float,
|
||||
help="Model prediction threshold",
|
||||
default=0.5,
|
||||
)
|
||||
|
||||
@transaction.atomic
|
||||
def handle(self, *args, **options):
|
||||
@ -67,7 +75,11 @@ class Command(BaseCommand):
|
||||
return packages
|
||||
|
||||
# Iteratively create models in options["model_names"]
|
||||
print(f"Creating models: {options['model_names']}")
|
||||
print(f"Creating models: {options['model_names']}\n"
|
||||
f"Data packages: {options['data_packages']}\n"
|
||||
f"Rule Packages (only for MLRR): {options['rule_packages']}\n"
|
||||
f"Eval Packages: {options['eval_packages']}\n"
|
||||
f"Threshold: {options['threshold']:.2f}")
|
||||
data_packages = decode_packages(options["data_packages"])
|
||||
eval_packages = decode_packages(options["eval_packages"])
|
||||
rule_packages = decode_packages(options["rule_packages"])
|
||||
@ -78,9 +90,10 @@ class Command(BaseCommand):
|
||||
pack,
|
||||
data_packages=data_packages,
|
||||
eval_packages=eval_packages,
|
||||
threshold=0.5,
|
||||
name="EnviFormer - T0.5",
|
||||
description="EnviFormer transformer",
|
||||
threshold=options['threshold'],
|
||||
name=f"EnviFormer - {', '.join(options['data_packages'])} - T{options['threshold']:.2f}",
|
||||
description=f"EnviFormer transformer trained on {options['data_packages']} "
|
||||
f"evaluated on {options['eval_packages']}.",
|
||||
)
|
||||
elif model_name == "mlrr":
|
||||
model = MLRelativeReasoning.create(
|
||||
@ -88,9 +101,10 @@ class Command(BaseCommand):
|
||||
rule_packages=rule_packages,
|
||||
data_packages=data_packages,
|
||||
eval_packages=eval_packages,
|
||||
threshold=0.5,
|
||||
name="ECC - BBD - T0.5",
|
||||
description="ML Relative Reasoning",
|
||||
threshold=options['threshold'],
|
||||
name=f"ECC - {', '.join(options['data_packages'])} - T{options['threshold']:.2f}",
|
||||
description=f"ML Relative Reasoning trained on {options['data_packages']} with rules from "
|
||||
f"{options['rule_packages']} and evaluated on {options['eval_packages']}.",
|
||||
)
|
||||
else:
|
||||
raise ValueError(f"Cannot create model of type {model_name}, unknown model type")
|
||||
@ -100,6 +114,6 @@ class Command(BaseCommand):
|
||||
print(f"Training {model_name}")
|
||||
model.build_model()
|
||||
print(f"Evaluating {model_name}")
|
||||
model.evaluate_model()
|
||||
model.evaluate_model(False, eval_packages=eval_packages)
|
||||
print(f"Saving {model_name}")
|
||||
model.save()
|
||||
|
||||
59
epdb/management/commands/dump_enviformer.py
Normal file
59
epdb/management/commands/dump_enviformer.py
Normal file
@ -0,0 +1,59 @@
|
||||
import json
|
||||
import os
|
||||
import tarfile
|
||||
from tempfile import TemporaryDirectory
|
||||
|
||||
from django.conf import settings as s
|
||||
from django.core.management.base import BaseCommand
|
||||
from django.db import transaction
|
||||
|
||||
from epdb.models import EnviFormer
|
||||
|
||||
|
||||
class Command(BaseCommand):
|
||||
def add_arguments(self, parser):
|
||||
parser.add_argument(
|
||||
"model",
|
||||
type=str,
|
||||
help="Model UUID of the Model to Dump",
|
||||
)
|
||||
parser.add_argument("--output", type=str)
|
||||
|
||||
def package_dict_and_folder(self, dict_data, folder_path, output_path):
|
||||
with TemporaryDirectory() as tmpdir:
|
||||
dict_filename = os.path.join(tmpdir, "data.json")
|
||||
|
||||
with open(dict_filename, "w", encoding="utf-8") as f:
|
||||
json.dump(dict_data, f, indent=2)
|
||||
|
||||
with tarfile.open(output_path, "w:gz") as tar:
|
||||
tar.add(dict_filename, arcname="data.json")
|
||||
tar.add(folder_path, arcname=os.path.basename(folder_path))
|
||||
|
||||
os.remove(dict_filename)
|
||||
|
||||
@transaction.atomic
|
||||
def handle(self, *args, **options):
|
||||
output = options["output"]
|
||||
|
||||
if os.path.exists(output):
|
||||
raise ValueError(f"Output file {output} already exists")
|
||||
|
||||
model = EnviFormer.objects.get(uuid=options["model"])
|
||||
|
||||
data = {
|
||||
"uuid": str(model.uuid),
|
||||
"name": model.name,
|
||||
"description": model.description,
|
||||
"kv": model.kv,
|
||||
"data_packages_uuids": [str(p.uuid) for p in model.data_packages.all()],
|
||||
"eval_packages_uuids": [str(p.uuid) for p in model.data_packages.all()],
|
||||
"threshold": model.threshold,
|
||||
"eval_results": model.eval_results,
|
||||
"multigen_eval": model.multigen_eval,
|
||||
"model_status": model.model_status,
|
||||
}
|
||||
|
||||
model_folder = os.path.join(s.MODEL_DIR, "enviformer", str(model.uuid))
|
||||
|
||||
self.package_dict_and_folder(data, model_folder, output)
|
||||
81
epdb/management/commands/load_enviformer.py
Normal file
81
epdb/management/commands/load_enviformer.py
Normal file
@ -0,0 +1,81 @@
|
||||
import json
|
||||
import os
|
||||
import shutil
|
||||
import tarfile
|
||||
from tempfile import TemporaryDirectory
|
||||
|
||||
from django.conf import settings as s
|
||||
from django.core.management.base import BaseCommand
|
||||
from django.db import transaction
|
||||
|
||||
from epdb.models import EnviFormer, Package
|
||||
|
||||
|
||||
class Command(BaseCommand):
|
||||
def add_arguments(self, parser):
|
||||
parser.add_argument(
|
||||
"input",
|
||||
type=str,
|
||||
help=".tar.gz file containing the Model dump.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"package",
|
||||
type=str,
|
||||
help="Package UUID where the Model should be loaded to.",
|
||||
)
|
||||
|
||||
def read_dict_and_folder_from_archive(self, archive_path, extract_to="extracted_folder"):
|
||||
with tarfile.open(archive_path, "r:gz") as tar:
|
||||
tar.extractall(extract_to)
|
||||
|
||||
dict_path = os.path.join(extract_to, "data.json")
|
||||
|
||||
if not os.path.exists(dict_path):
|
||||
raise FileNotFoundError("data.json not found in the archive.")
|
||||
|
||||
with open(dict_path, "r", encoding="utf-8") as f:
|
||||
data_dict = json.load(f)
|
||||
|
||||
extracted_items = os.listdir(extract_to)
|
||||
folders = [item for item in extracted_items if item != "data.json"]
|
||||
folder_path = os.path.join(extract_to, folders[0]) if folders else None
|
||||
|
||||
return data_dict, folder_path
|
||||
|
||||
@transaction.atomic
|
||||
def handle(self, *args, **options):
|
||||
if not os.path.exists(options["input"]):
|
||||
raise ValueError(f"Input file {options['input']} does not exist.")
|
||||
|
||||
target_package = Package.objects.get(uuid=options["package"])
|
||||
|
||||
with TemporaryDirectory() as tmpdir:
|
||||
data, folder = self.read_dict_and_folder_from_archive(options["input"], tmpdir)
|
||||
|
||||
model = EnviFormer()
|
||||
model.package = target_package
|
||||
# model.uuid = data["uuid"]
|
||||
model.name = data["name"]
|
||||
model.description = data["description"]
|
||||
model.kv = data["kv"]
|
||||
model.threshold = float(data["threshold"])
|
||||
model.eval_results = data["eval_results"]
|
||||
model.multigen_eval = data["multigen_eval"]
|
||||
model.model_status = data["model_status"]
|
||||
model.save()
|
||||
|
||||
for p_uuid in data["data_packages_uuids"]:
|
||||
p = Package.objects.get(uuid=p_uuid)
|
||||
model.data_packages.add(p)
|
||||
|
||||
for p_uuid in data["eval_packages_uuids"]:
|
||||
p = Package.objects.get(uuid=p_uuid)
|
||||
model.eval_packages.add(p)
|
||||
|
||||
target_folder = os.path.join(s.MODEL_DIR, "enviformer", str(model.uuid))
|
||||
|
||||
shutil.copytree(folder, target_folder)
|
||||
os.rename(
|
||||
os.path.join(s.MODEL_DIR, "enviformer", str(model.uuid), f"{data['uuid']}.ckpt"),
|
||||
os.path.join(s.MODEL_DIR, "enviformer", str(model.uuid), f"{model.uuid}.ckpt"),
|
||||
)
|
||||
@ -1,8 +1,10 @@
|
||||
from django.apps import apps
|
||||
from django.core.management.base import BaseCommand
|
||||
|
||||
from django.db.models import F, Value
|
||||
from django.db.models.functions import Replace
|
||||
from django.db.models import F, Value, TextField, JSONField
|
||||
from django.db.models.functions import Replace, Cast
|
||||
|
||||
from epdb.models import EnviPathModel
|
||||
|
||||
|
||||
class Command(BaseCommand):
|
||||
@ -41,6 +43,7 @@ class Command(BaseCommand):
|
||||
"RuleBasedRelativeReasoning",
|
||||
"EnviFormer",
|
||||
"ApplicabilityDomain",
|
||||
"EnzymeLink",
|
||||
]
|
||||
for model in MODELS:
|
||||
obj_cls = apps.get_model("epdb", model)
|
||||
@ -48,3 +51,14 @@ class Command(BaseCommand):
|
||||
obj_cls.objects.update(
|
||||
url=Replace(F("url"), Value(options["old"]), Value(options["new"]))
|
||||
)
|
||||
if issubclass(obj_cls, EnviPathModel):
|
||||
obj_cls.objects.update(
|
||||
kv=Cast(
|
||||
Replace(
|
||||
Cast(F("kv"), output_field=TextField()),
|
||||
Value(options["old"]),
|
||||
Value(options["new"]),
|
||||
),
|
||||
output_field=JSONField(),
|
||||
)
|
||||
)
|
||||
|
||||
38
epdb/management/commands/update_job_logs.py
Normal file
38
epdb/management/commands/update_job_logs.py
Normal file
@ -0,0 +1,38 @@
|
||||
from datetime import date, timedelta
|
||||
|
||||
from django.core.management.base import BaseCommand
|
||||
from django.db import transaction
|
||||
|
||||
from epdb.models import JobLog
|
||||
|
||||
|
||||
class Command(BaseCommand):
|
||||
def add_arguments(self, parser):
|
||||
parser.add_argument(
|
||||
"--cleanup",
|
||||
type=int,
|
||||
default=None,
|
||||
help="Remove all logs older than this number of days. Default is None, which does not remove any logs.",
|
||||
)
|
||||
|
||||
@transaction.atomic
|
||||
def handle(self, *args, **options):
|
||||
if options["cleanup"] is not None:
|
||||
cleanup_dt = date.today() - timedelta(days=options["cleanup"])
|
||||
print(JobLog.objects.filter(created__lt=cleanup_dt).delete())
|
||||
|
||||
logs = JobLog.objects.filter(status="INITIAL")
|
||||
print(f"Found {logs.count()} logs to update")
|
||||
updated = 0
|
||||
for log in logs:
|
||||
res = log.check_for_update()
|
||||
if res:
|
||||
updated += 1
|
||||
|
||||
print(f"Updated {updated} logs")
|
||||
|
||||
from django.db.models import Count
|
||||
|
||||
qs = JobLog.objects.values("status").annotate(total=Count("status"))
|
||||
for r in qs:
|
||||
print(r["status"], r["total"])
|
||||
64
epdb/migrations/0008_enzymelink.py
Normal file
64
epdb/migrations/0008_enzymelink.py
Normal file
@ -0,0 +1,64 @@
|
||||
# Generated by Django 5.2.7 on 2025-10-10 06:58
|
||||
|
||||
import django.db.models.deletion
|
||||
import django.utils.timezone
|
||||
import model_utils.fields
|
||||
import uuid
|
||||
from django.db import migrations, models
|
||||
|
||||
|
||||
class Migration(migrations.Migration):
|
||||
dependencies = [
|
||||
("epdb", "0007_alter_enviformer_options_enviformer_app_domain_and_more"),
|
||||
]
|
||||
|
||||
operations = [
|
||||
migrations.CreateModel(
|
||||
name="EnzymeLink",
|
||||
fields=[
|
||||
(
|
||||
"id",
|
||||
models.BigAutoField(
|
||||
auto_created=True, primary_key=True, serialize=False, verbose_name="ID"
|
||||
),
|
||||
),
|
||||
(
|
||||
"created",
|
||||
model_utils.fields.AutoCreatedField(
|
||||
default=django.utils.timezone.now, editable=False, verbose_name="created"
|
||||
),
|
||||
),
|
||||
(
|
||||
"modified",
|
||||
model_utils.fields.AutoLastModifiedField(
|
||||
default=django.utils.timezone.now, editable=False, verbose_name="modified"
|
||||
),
|
||||
),
|
||||
(
|
||||
"uuid",
|
||||
models.UUIDField(
|
||||
default=uuid.uuid4, unique=True, verbose_name="UUID of this object"
|
||||
),
|
||||
),
|
||||
("name", models.TextField(default="no name", verbose_name="Name")),
|
||||
(
|
||||
"description",
|
||||
models.TextField(default="no description", verbose_name="Descriptions"),
|
||||
),
|
||||
("url", models.TextField(null=True, unique=True, verbose_name="URL")),
|
||||
("kv", models.JSONField(blank=True, default=dict, null=True)),
|
||||
("ec_number", models.TextField(verbose_name="EC Number")),
|
||||
("classification_level", models.IntegerField(verbose_name="Classification Level")),
|
||||
("linking_method", models.TextField(verbose_name="Linking Method")),
|
||||
("edge_evidence", models.ManyToManyField(to="epdb.edge")),
|
||||
("reaction_evidence", models.ManyToManyField(to="epdb.reaction")),
|
||||
(
|
||||
"rule",
|
||||
models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to="epdb.rule"),
|
||||
),
|
||||
],
|
||||
options={
|
||||
"abstract": False,
|
||||
},
|
||||
),
|
||||
]
|
||||
66
epdb/migrations/0009_joblog.py
Normal file
66
epdb/migrations/0009_joblog.py
Normal file
@ -0,0 +1,66 @@
|
||||
# Generated by Django 5.2.7 on 2025-10-27 09:39
|
||||
|
||||
import django.db.models.deletion
|
||||
import django.utils.timezone
|
||||
import model_utils.fields
|
||||
from django.conf import settings
|
||||
from django.db import migrations, models
|
||||
|
||||
|
||||
class Migration(migrations.Migration):
|
||||
dependencies = [
|
||||
("epdb", "0008_enzymelink"),
|
||||
]
|
||||
|
||||
operations = [
|
||||
migrations.CreateModel(
|
||||
name="JobLog",
|
||||
fields=[
|
||||
(
|
||||
"id",
|
||||
models.BigAutoField(
|
||||
auto_created=True, primary_key=True, serialize=False, verbose_name="ID"
|
||||
),
|
||||
),
|
||||
(
|
||||
"created",
|
||||
model_utils.fields.AutoCreatedField(
|
||||
default=django.utils.timezone.now, editable=False, verbose_name="created"
|
||||
),
|
||||
),
|
||||
(
|
||||
"modified",
|
||||
model_utils.fields.AutoLastModifiedField(
|
||||
default=django.utils.timezone.now, editable=False, verbose_name="modified"
|
||||
),
|
||||
),
|
||||
("task_id", models.UUIDField(unique=True)),
|
||||
("job_name", models.TextField()),
|
||||
(
|
||||
"status",
|
||||
models.CharField(
|
||||
choices=[
|
||||
("INITIAL", "Initial"),
|
||||
("SUCCESS", "Success"),
|
||||
("FAILURE", "Failure"),
|
||||
("REVOKED", "Revoked"),
|
||||
("IGNORED", "Ignored"),
|
||||
],
|
||||
default="INITIAL",
|
||||
max_length=20,
|
||||
),
|
||||
),
|
||||
("done_at", models.DateTimeField(blank=True, default=None, null=True)),
|
||||
("task_result", models.TextField(blank=True, default=None, null=True)),
|
||||
(
|
||||
"user",
|
||||
models.ForeignKey(
|
||||
on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL
|
||||
),
|
||||
),
|
||||
],
|
||||
options={
|
||||
"abstract": False,
|
||||
},
|
||||
),
|
||||
]
|
||||
166
epdb/models.py
166
epdb/models.py
@ -310,7 +310,7 @@ class ExternalDatabase(TimeStampedModel):
|
||||
},
|
||||
{
|
||||
"database": ExternalDatabase.objects.get(name="ChEBI"),
|
||||
"placeholder": "ChEBI ID without prefix e.g. 12345",
|
||||
"placeholder": "ChEBI ID without prefix e.g. 10576",
|
||||
},
|
||||
],
|
||||
"structure": [
|
||||
@ -328,7 +328,7 @@ class ExternalDatabase(TimeStampedModel):
|
||||
},
|
||||
{
|
||||
"database": ExternalDatabase.objects.get(name="ChEBI"),
|
||||
"placeholder": "ChEBI ID without prefix e.g. 12345",
|
||||
"placeholder": "ChEBI ID without prefix e.g. 10576",
|
||||
},
|
||||
],
|
||||
"reaction": [
|
||||
@ -342,7 +342,7 @@ class ExternalDatabase(TimeStampedModel):
|
||||
},
|
||||
{
|
||||
"database": ExternalDatabase.objects.get(name="UniProt"),
|
||||
"placeholder": "Query ID for UniPro e.g. rhea:12345",
|
||||
"placeholder": "Query ID for UniProt e.g. rhea:12345",
|
||||
},
|
||||
],
|
||||
}
|
||||
@ -477,7 +477,7 @@ class ChemicalIdentifierMixin(ExternalIdentifierMixin):
|
||||
return self.add_external_identifier("CAS", cas_number)
|
||||
|
||||
def get_pubchem_identifiers(self):
|
||||
return self.get_external_identifier("PubChem Compound") or self.get_external_identifier(
|
||||
return self.get_external_identifier("PubChem Compound") | self.get_external_identifier(
|
||||
"PubChem Substance"
|
||||
)
|
||||
|
||||
@ -494,6 +494,20 @@ class ChemicalIdentifierMixin(ExternalIdentifierMixin):
|
||||
return self.get_external_identifier("CAS")
|
||||
|
||||
|
||||
class KEGGIdentifierMixin(ExternalIdentifierMixin):
|
||||
@property
|
||||
def kegg_reaction_links(self):
|
||||
return self.get_external_identifier("KEGG Reaction")
|
||||
|
||||
def add_kegg_reaction_id(self, kegg_id):
|
||||
return self.add_external_identifier(
|
||||
"KEGG Reaction", kegg_id, f"https://www.genome.jp/entry/{kegg_id}"
|
||||
)
|
||||
|
||||
class Meta:
|
||||
abstract = True
|
||||
|
||||
|
||||
class ReactionIdentifierMixin(ExternalIdentifierMixin):
|
||||
class Meta:
|
||||
abstract = True
|
||||
@ -1014,6 +1028,26 @@ class CompoundStructure(EnviPathModel, AliasMixin, ScenarioMixin, ChemicalIdenti
|
||||
return self.compound.default_structure == self
|
||||
|
||||
|
||||
class EnzymeLink(EnviPathModel, KEGGIdentifierMixin):
|
||||
rule = models.ForeignKey("Rule", on_delete=models.CASCADE, db_index=True)
|
||||
ec_number = models.TextField(blank=False, null=False, verbose_name="EC Number")
|
||||
classification_level = models.IntegerField(
|
||||
blank=False, null=False, verbose_name="Classification Level"
|
||||
)
|
||||
linking_method = models.TextField(blank=False, null=False, verbose_name="Linking Method")
|
||||
|
||||
reaction_evidence = models.ManyToManyField("epdb.Reaction")
|
||||
edge_evidence = models.ManyToManyField("epdb.Edge")
|
||||
|
||||
external_identifiers = GenericRelation("ExternalIdentifier")
|
||||
|
||||
def _url(self):
|
||||
return "{}/enzymelink/{}".format(self.rule.url, self.uuid)
|
||||
|
||||
def get_group(self) -> str:
|
||||
return ".".join(self.ec_number.split(".")[:3]) + ".-"
|
||||
|
||||
|
||||
class Rule(PolymorphicModel, EnviPathModel, AliasMixin, ScenarioMixin):
|
||||
package = models.ForeignKey(
|
||||
"epdb.Package", verbose_name="Package", on_delete=models.CASCADE, db_index=True
|
||||
@ -1095,6 +1129,18 @@ class Rule(PolymorphicModel, EnviPathModel, AliasMixin, ScenarioMixin):
|
||||
|
||||
return new_rule
|
||||
|
||||
def enzymelinks(self):
|
||||
return self.enzymelink_set.all()
|
||||
|
||||
def get_grouped_enzymelinks(self):
|
||||
res = defaultdict(list)
|
||||
|
||||
for el in self.enzymelinks():
|
||||
key = ".".join(el.ec_number.split(".")[:3]) + ".-"
|
||||
res[key].append(el)
|
||||
|
||||
return dict(res)
|
||||
|
||||
|
||||
class SimpleRule(Rule):
|
||||
pass
|
||||
@ -1437,6 +1483,16 @@ class Reaction(EnviPathModel, AliasMixin, ScenarioMixin, ReactionIdentifierMixin
|
||||
id__in=Edge.objects.filter(edge_label=self).values("pathway_id")
|
||||
).order_by("name")
|
||||
|
||||
def get_related_enzymes(self):
|
||||
res = []
|
||||
edges = Edge.objects.filter(edge_label=self)
|
||||
for e in edges:
|
||||
for scen in e.scenarios.all():
|
||||
for ai in scen.additional_information.keys():
|
||||
if ai == "Enzyme":
|
||||
res.extend(scen.additional_information[ai])
|
||||
return res
|
||||
|
||||
|
||||
class Pathway(EnviPathModel, AliasMixin, ScenarioMixin):
|
||||
package = models.ForeignKey(
|
||||
@ -2169,10 +2225,18 @@ class PackageBasedModel(EPModel):
|
||||
self.model_status = self.BUILT_NOT_EVALUATED
|
||||
self.save()
|
||||
|
||||
def evaluate_model(self):
|
||||
def evaluate_model(self, multigen: bool, eval_packages: List["Package"] = None):
|
||||
if self.model_status != self.BUILT_NOT_EVALUATED:
|
||||
raise ValueError(f"Can't evaluate a model in state {self.model_status}!")
|
||||
|
||||
if multigen:
|
||||
self.multigen_eval = multigen
|
||||
self.save()
|
||||
|
||||
if eval_packages is not None:
|
||||
for p in eval_packages:
|
||||
self.eval_packages.add(p)
|
||||
|
||||
self.model_status = self.EVALUATING
|
||||
self.save()
|
||||
|
||||
@ -2469,7 +2533,6 @@ class RuleBasedRelativeReasoning(PackageBasedModel):
|
||||
package: "Package",
|
||||
rule_packages: List["Package"],
|
||||
data_packages: List["Package"],
|
||||
eval_packages: List["Package"],
|
||||
threshold: float = 0.5,
|
||||
min_count: int = 10,
|
||||
max_count: int = 0,
|
||||
@ -2518,10 +2581,6 @@ class RuleBasedRelativeReasoning(PackageBasedModel):
|
||||
for p in rule_packages:
|
||||
rbrr.data_packages.add(p)
|
||||
|
||||
if eval_packages:
|
||||
for p in eval_packages:
|
||||
rbrr.eval_packages.add(p)
|
||||
|
||||
rbrr.save()
|
||||
|
||||
return rbrr
|
||||
@ -2576,7 +2635,6 @@ class MLRelativeReasoning(PackageBasedModel):
|
||||
package: "Package",
|
||||
rule_packages: List["Package"],
|
||||
data_packages: List["Package"],
|
||||
eval_packages: List["Package"],
|
||||
threshold: float = 0.5,
|
||||
name: "str" = None,
|
||||
description: str = None,
|
||||
@ -2616,10 +2674,6 @@ class MLRelativeReasoning(PackageBasedModel):
|
||||
for p in rule_packages:
|
||||
mlrr.data_packages.add(p)
|
||||
|
||||
if eval_packages:
|
||||
for p in eval_packages:
|
||||
mlrr.eval_packages.add(p)
|
||||
|
||||
if build_app_domain:
|
||||
ad = ApplicabilityDomain.create(
|
||||
mlrr,
|
||||
@ -2939,7 +2993,6 @@ class EnviFormer(PackageBasedModel):
|
||||
def create(
|
||||
package: "Package",
|
||||
data_packages: List["Package"],
|
||||
eval_packages: List["Package"],
|
||||
threshold: float = 0.5,
|
||||
name: "str" = None,
|
||||
description: str = None,
|
||||
@ -2972,10 +3025,6 @@ class EnviFormer(PackageBasedModel):
|
||||
for p in data_packages:
|
||||
mod.data_packages.add(p)
|
||||
|
||||
if eval_packages:
|
||||
for p in eval_packages:
|
||||
mod.eval_packages.add(p)
|
||||
|
||||
# if build_app_domain:
|
||||
# ad = ApplicabilityDomain.create(mod, app_domain_num_neighbours, app_domain_reliability_threshold,
|
||||
# app_domain_local_compatibility_threshold)
|
||||
@ -2989,7 +3038,8 @@ class EnviFormer(PackageBasedModel):
|
||||
from enviformer import load
|
||||
|
||||
ckpt = os.path.join(s.MODEL_DIR, "enviformer", str(self.uuid), f"{self.uuid}.ckpt")
|
||||
return load(device=s.ENVIFORMER_DEVICE, ckpt_path=ckpt)
|
||||
mod = load(device=s.ENVIFORMER_DEVICE, ckpt_path=ckpt)
|
||||
return mod
|
||||
|
||||
def predict(self, smiles) -> List["PredictionResult"]:
|
||||
return self.predict_batch([smiles])[0]
|
||||
@ -3003,8 +3053,12 @@ class EnviFormer(PackageBasedModel):
|
||||
for smiles in smiles_list
|
||||
]
|
||||
logger.info(f"Submitting {canon_smiles} to {self.name}")
|
||||
start = datetime.now()
|
||||
products_list = self.model.predict_batch(canon_smiles)
|
||||
logger.info(f"Got results {products_list}")
|
||||
end = datetime.now()
|
||||
logger.info(
|
||||
f"Prediction took {(end - start).total_seconds():.2f} seconds. Got results {products_list}"
|
||||
)
|
||||
|
||||
results = []
|
||||
for products in products_list:
|
||||
@ -3031,6 +3085,7 @@ class EnviFormer(PackageBasedModel):
|
||||
|
||||
start = datetime.now()
|
||||
# Standardise reactions for the training data, EnviFormer ignores stereochemistry currently
|
||||
co2 = {"C(=O)=O", "O=C=O"}
|
||||
ds = []
|
||||
for reaction in self._get_reactions():
|
||||
educts = ".".join(
|
||||
@ -3045,7 +3100,8 @@ class EnviFormer(PackageBasedModel):
|
||||
for smile in reaction.products.all()
|
||||
]
|
||||
)
|
||||
ds.append(f"{educts}>>{products}")
|
||||
if products not in co2:
|
||||
ds.append(f"{educts}>>{products}")
|
||||
|
||||
end = datetime.now()
|
||||
logger.debug(f"build_dataset took {(end - start).total_seconds()} seconds")
|
||||
@ -3081,10 +3137,18 @@ class EnviFormer(PackageBasedModel):
|
||||
args = {"clz": "EnviFormer"}
|
||||
return args
|
||||
|
||||
def evaluate_model(self):
|
||||
def evaluate_model(self, multigen: bool, eval_packages: List["Package"] = None):
|
||||
if self.model_status != self.BUILT_NOT_EVALUATED:
|
||||
raise ValueError(f"Can't evaluate a model in state {self.model_status}!")
|
||||
|
||||
if multigen:
|
||||
self.multigen_eval = multigen
|
||||
self.save()
|
||||
|
||||
if eval_packages is not None:
|
||||
for p in eval_packages:
|
||||
self.eval_packages.add(p)
|
||||
|
||||
self.model_status = self.EVALUATING
|
||||
self.save()
|
||||
|
||||
@ -3241,7 +3305,7 @@ class EnviFormer(PackageBasedModel):
|
||||
|
||||
ds = self.load_dataset()
|
||||
n_splits = 20
|
||||
shuff = ShuffleSplit(n_splits=n_splits, test_size=0.25, random_state=42)
|
||||
shuff = ShuffleSplit(n_splits=n_splits, test_size=0.1, random_state=42)
|
||||
|
||||
# Single gen eval is done in one loop of train then evaluate rather than storing all n_splits trained models
|
||||
# this helps reduce the memory footprint.
|
||||
@ -3309,7 +3373,7 @@ class EnviFormer(PackageBasedModel):
|
||||
# Compute splits of the collected pathway and evaluate. Like single gen we train and evaluate in each
|
||||
# iteration instead of storing all trained models.
|
||||
for split_id, (train, test) in enumerate(
|
||||
ShuffleSplit(n_splits=n_splits, test_size=0.25, random_state=42).split(pathways)
|
||||
ShuffleSplit(n_splits=n_splits, test_size=0.1, random_state=42).split(pathways)
|
||||
):
|
||||
train_pathways = [pathways[i] for i in train]
|
||||
test_pathways = [pathways[i] for i in test]
|
||||
@ -3608,3 +3672,53 @@ class Setting(EnviPathModel):
|
||||
self.public = True
|
||||
self.global_default = True
|
||||
self.save()
|
||||
|
||||
|
||||
class JobLogStatus(models.TextChoices):
|
||||
INITIAL = "INITIAL", "Initial"
|
||||
SUCCESS = "SUCCESS", "Success"
|
||||
FAILURE = "FAILURE", "Failure"
|
||||
REVOKED = "REVOKED", "Revoked"
|
||||
IGNORED = "IGNORED", "Ignored"
|
||||
|
||||
|
||||
class JobLog(TimeStampedModel):
|
||||
user = models.ForeignKey("epdb.User", models.CASCADE)
|
||||
task_id = models.UUIDField(unique=True)
|
||||
job_name = models.TextField(null=False, blank=False)
|
||||
status = models.CharField(
|
||||
max_length=20,
|
||||
choices=JobLogStatus.choices,
|
||||
default=JobLogStatus.INITIAL,
|
||||
)
|
||||
|
||||
done_at = models.DateTimeField(null=True, blank=True, default=None)
|
||||
task_result = models.TextField(null=True, blank=True, default=None)
|
||||
|
||||
def check_for_update(self):
|
||||
async_res = self.get_result()
|
||||
new_status = async_res.state
|
||||
|
||||
TERMINAL_STATES = [
|
||||
"SUCCESS",
|
||||
"FAILURE",
|
||||
"REVOKED",
|
||||
"IGNORED",
|
||||
]
|
||||
|
||||
if new_status != self.status and new_status in TERMINAL_STATES:
|
||||
self.status = new_status
|
||||
self.done_at = async_res.date_done
|
||||
|
||||
if new_status == "SUCCESS":
|
||||
self.task_result = async_res.result
|
||||
|
||||
self.save()
|
||||
|
||||
return True
|
||||
return False
|
||||
|
||||
def get_result(self):
|
||||
from celery.result import AsyncResult
|
||||
|
||||
return AsyncResult(str(self.task_id))
|
||||
|
||||
129
epdb/tasks.py
129
epdb/tasks.py
@ -1,12 +1,56 @@
|
||||
import logging
|
||||
from typing import Optional
|
||||
from datetime import datetime
|
||||
from typing import Callable, Optional
|
||||
from uuid import uuid4
|
||||
|
||||
from celery import shared_task
|
||||
from epdb.models import Pathway, Node, EPModel, Setting
|
||||
from epdb.logic import SPathway
|
||||
from celery.utils.functional import LRUCache
|
||||
|
||||
from epdb.logic import SPathway
|
||||
from epdb.models import EPModel, JobLog, Node, Package, Pathway, Setting, User
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
ML_CACHE = LRUCache(3) # Cache the three most recent ML models to reduce load times.
|
||||
|
||||
|
||||
def get_ml_model(model_pk: int):
|
||||
if model_pk not in ML_CACHE:
|
||||
ML_CACHE[model_pk] = EPModel.objects.get(id=model_pk)
|
||||
return ML_CACHE[model_pk]
|
||||
|
||||
|
||||
def dispatch_eager(user: "User", job: Callable, *args, **kwargs):
|
||||
try:
|
||||
x = job(*args, **kwargs)
|
||||
log = JobLog()
|
||||
log.user = user
|
||||
log.task_id = uuid4()
|
||||
log.job_name = job.__name__
|
||||
log.status = "SUCCESS"
|
||||
log.done_at = datetime.now()
|
||||
log.task_result = str(x) if x else None
|
||||
log.save()
|
||||
|
||||
return x
|
||||
except Exception as e:
|
||||
logger.exception(e)
|
||||
raise e
|
||||
|
||||
|
||||
def dispatch(user: "User", job: Callable, *args, **kwargs):
|
||||
try:
|
||||
x = job.delay(*args, **kwargs)
|
||||
log = JobLog()
|
||||
log.user = user
|
||||
log.task_id = x.task_id
|
||||
log.job_name = job.__name__
|
||||
log.status = "INITIAL"
|
||||
log.save()
|
||||
|
||||
return x.result
|
||||
except Exception as e:
|
||||
logger.exception(e)
|
||||
raise e
|
||||
|
||||
|
||||
@shared_task(queue="background")
|
||||
@ -16,7 +60,7 @@ def mul(a, b):
|
||||
|
||||
@shared_task(queue="predict")
|
||||
def predict_simple(model_pk: int, smiles: str):
|
||||
mod = EPModel.objects.get(id=model_pk)
|
||||
mod = get_ml_model(model_pk)
|
||||
res = mod.predict(smiles)
|
||||
return res
|
||||
|
||||
@ -26,17 +70,55 @@ def send_registration_mail(user_pk: int):
|
||||
pass
|
||||
|
||||
|
||||
@shared_task(queue="model")
|
||||
def build_model(model_pk: int):
|
||||
@shared_task(bind=True, queue="model")
|
||||
def build_model(self, model_pk: int):
|
||||
mod = EPModel.objects.get(id=model_pk)
|
||||
mod.build_dataset()
|
||||
mod.build_model()
|
||||
|
||||
if JobLog.objects.filter(task_id=self.request.id).exists():
|
||||
JobLog.objects.filter(task_id=self.request.id).update(status="RUNNING", task_result=mod.url)
|
||||
|
||||
try:
|
||||
mod.build_dataset()
|
||||
mod.build_model()
|
||||
except Exception as e:
|
||||
if JobLog.objects.filter(task_id=self.request.id).exists():
|
||||
JobLog.objects.filter(task_id=self.request.id).update(
|
||||
status="FAILED", task_result=mod.url
|
||||
)
|
||||
|
||||
raise e
|
||||
|
||||
if JobLog.objects.filter(task_id=self.request.id).exists():
|
||||
JobLog.objects.filter(task_id=self.request.id).update(status="SUCCESS", task_result=mod.url)
|
||||
|
||||
return mod.url
|
||||
|
||||
|
||||
@shared_task(queue="model")
|
||||
def evaluate_model(model_pk: int):
|
||||
@shared_task(bind=True, queue="model")
|
||||
def evaluate_model(self, model_pk: int, multigen: bool, package_pks: Optional[list] = None):
|
||||
packages = None
|
||||
|
||||
if package_pks:
|
||||
packages = Package.objects.filter(pk__in=package_pks)
|
||||
|
||||
mod = EPModel.objects.get(id=model_pk)
|
||||
mod.evaluate_model()
|
||||
if JobLog.objects.filter(task_id=self.request.id).exists():
|
||||
JobLog.objects.filter(task_id=self.request.id).update(status="RUNNING", task_result=mod.url)
|
||||
|
||||
try:
|
||||
mod.evaluate_model(multigen, eval_packages=packages)
|
||||
except Exception as e:
|
||||
if JobLog.objects.filter(task_id=self.request.id).exists():
|
||||
JobLog.objects.filter(task_id=self.request.id).update(
|
||||
status="FAILED", task_result=mod.url
|
||||
)
|
||||
|
||||
raise e
|
||||
|
||||
if JobLog.objects.filter(task_id=self.request.id).exists():
|
||||
JobLog.objects.filter(task_id=self.request.id).update(status="SUCCESS", task_result=mod.url)
|
||||
|
||||
return mod.url
|
||||
|
||||
|
||||
@shared_task(queue="model")
|
||||
@ -45,16 +127,26 @@ def retrain(model_pk: int):
|
||||
mod.retrain()
|
||||
|
||||
|
||||
@shared_task(queue="predict")
|
||||
@shared_task(bind=True, queue="predict")
|
||||
def predict(
|
||||
pw_pk: int, pred_setting_pk: int, limit: Optional[int] = None, node_pk: Optional[int] = None
|
||||
self,
|
||||
pw_pk: int,
|
||||
pred_setting_pk: int,
|
||||
limit: Optional[int] = None,
|
||||
node_pk: Optional[int] = None,
|
||||
) -> Pathway:
|
||||
pw = Pathway.objects.get(id=pw_pk)
|
||||
setting = Setting.objects.get(id=pred_setting_pk)
|
||||
# If the setting has a model add/restore it from the cache
|
||||
if setting.model is not None:
|
||||
setting.model = get_ml_model(setting.model.pk)
|
||||
|
||||
pw.kv.update(**{"status": "running"})
|
||||
pw.save()
|
||||
|
||||
if JobLog.objects.filter(task_id=self.request.id).exists():
|
||||
JobLog.objects.filter(task_id=self.request.id).update(status="RUNNING", task_result=pw.url)
|
||||
|
||||
try:
|
||||
# regular prediction
|
||||
if limit is not None:
|
||||
@ -79,7 +171,18 @@ def predict(
|
||||
except Exception as e:
|
||||
pw.kv.update({"status": "failed"})
|
||||
pw.save()
|
||||
|
||||
if JobLog.objects.filter(task_id=self.request.id).exists():
|
||||
JobLog.objects.filter(task_id=self.request.id).update(
|
||||
status="FAILED", task_result=pw.url
|
||||
)
|
||||
|
||||
raise e
|
||||
|
||||
pw.kv.update(**{"status": "completed"})
|
||||
pw.save()
|
||||
|
||||
if JobLog.objects.filter(task_id=self.request.id).exists():
|
||||
JobLog.objects.filter(task_id=self.request.id).update(status="SUCCESS", task_result=pw.url)
|
||||
|
||||
return pw.url
|
||||
|
||||
@ -1,8 +1,21 @@
|
||||
from django import template
|
||||
from pydantic import AnyHttpUrl, ValidationError
|
||||
from pydantic.type_adapter import TypeAdapter
|
||||
|
||||
register = template.Library()
|
||||
|
||||
url_adapter = TypeAdapter(AnyHttpUrl)
|
||||
|
||||
|
||||
@register.filter
|
||||
def classname(obj):
|
||||
return obj.__class__.__name__
|
||||
|
||||
|
||||
@register.filter
|
||||
def is_url(value):
|
||||
try:
|
||||
url_adapter.validate_python(value)
|
||||
return True
|
||||
except ValidationError:
|
||||
return False
|
||||
|
||||
51
epdb/urls.py
51
epdb/urls.py
@ -1,5 +1,5 @@
|
||||
from django.urls import path, re_path
|
||||
from django.contrib.auth import views as auth_views
|
||||
from django.urls import path, re_path
|
||||
|
||||
from . import views as v
|
||||
|
||||
@ -88,20 +88,36 @@ urlpatterns = [
|
||||
v.package_rule,
|
||||
name="package rule detail",
|
||||
),
|
||||
re_path(
|
||||
rf"^package/(?P<package_uuid>{UUID})/simple-rdkit-rule/(?P<rule_uuid>{UUID})$",
|
||||
v.package_rule,
|
||||
name="package rule detail",
|
||||
),
|
||||
# re_path(
|
||||
# rf"^package/(?P<package_uuid>{UUID})/simple-rdkit-rule/(?P<rule_uuid>{UUID})$",
|
||||
# v.package_rule,
|
||||
# name="package rule detail",
|
||||
# ),
|
||||
re_path(
|
||||
rf"^package/(?P<package_uuid>{UUID})/parallel-rule/(?P<rule_uuid>{UUID})$",
|
||||
v.package_rule,
|
||||
name="package rule detail",
|
||||
),
|
||||
# re_path(
|
||||
# rf"^package/(?P<package_uuid>{UUID})/sequential-rule/(?P<rule_uuid>{UUID})$",
|
||||
# v.package_rule,
|
||||
# name="package rule detail",
|
||||
# ),
|
||||
# EnzymeLinks
|
||||
re_path(
|
||||
rf"^package/(?P<package_uuid>{UUID})/sequential-rule/(?P<rule_uuid>{UUID})$",
|
||||
v.package_rule,
|
||||
name="package rule detail",
|
||||
rf"^package/(?P<package_uuid>{UUID})/rule/(?P<rule_uuid>{UUID})/enzymelink/(?P<enzymelink_uuid>{UUID})$",
|
||||
v.package_rule_enzymelink,
|
||||
name="package rule enzymelink detail",
|
||||
),
|
||||
re_path(
|
||||
rf"^package/(?P<package_uuid>{UUID})/simple-ambit-rule/(?P<rule_uuid>{UUID})/enzymelink/(?P<enzymelink_uuid>{UUID})$",
|
||||
v.package_rule_enzymelink,
|
||||
name="package rule enzymelink detail",
|
||||
),
|
||||
re_path(
|
||||
rf"^package/(?P<package_uuid>{UUID})/parallel-rule/(?P<rule_uuid>{UUID})/enzymelink/(?P<enzymelink_uuid>{UUID})$",
|
||||
v.package_rule_enzymelink,
|
||||
name="package rule enzymelink detail",
|
||||
),
|
||||
# Reaction
|
||||
re_path(
|
||||
@ -174,15 +190,16 @@ urlpatterns = [
|
||||
re_path(r"^indigo/dearomatize$", v.dearomatize, name="indigo_dearomatize"),
|
||||
re_path(r"^indigo/layout$", v.layout, name="indigo_layout"),
|
||||
re_path(r"^depict$", v.depict, name="depict"),
|
||||
re_path(r"^jobs", v.jobs, name="jobs"),
|
||||
# OAuth Stuff
|
||||
path("o/userinfo/", v.userinfo, name="oauth_userinfo"),
|
||||
# Static Pages
|
||||
re_path(r"^terms$", v.terms_of_use, name="terms_of_use"),
|
||||
re_path(r"^privacy$", v.privacy_policy, name="privacy_policy"),
|
||||
re_path(r"^cookie-policy$", v.cookie_policy, name="cookie_policy"),
|
||||
re_path(r"^about$", v.about_us, name="about_us"),
|
||||
re_path(r"^contact$", v.contact_support, name="contact_support"),
|
||||
re_path(r"^jobs$", v.jobs, name="jobs"),
|
||||
re_path(r"^cite$", v.cite, name="cite"),
|
||||
re_path(r"^legal$", v.legal, name="legal"),
|
||||
re_path(r"^terms$", v.static_terms_of_use, name="terms_of_use"),
|
||||
re_path(r"^privacy$", v.static_privacy_policy, name="privacy_policy"),
|
||||
re_path(r"^cookie-policy$", v.static_cookie_policy, name="cookie_policy"),
|
||||
re_path(r"^about$", v.static_about_us, name="about_us"),
|
||||
re_path(r"^contact$", v.static_contact_support, name="contact_support"),
|
||||
re_path(r"^jobs$", v.static_jobs, name="jobs"),
|
||||
re_path(r"^cite$", v.static_cite, name="cite"),
|
||||
re_path(r"^legal$", v.static_legal, name="legal"),
|
||||
]
|
||||
|
||||
268
epdb/views.py
268
epdb/views.py
@ -46,6 +46,8 @@ from .models import (
|
||||
Edge,
|
||||
ExternalDatabase,
|
||||
ExternalIdentifier,
|
||||
EnzymeLink,
|
||||
JobLog,
|
||||
)
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
@ -756,8 +758,8 @@ def package_models(request, package_uuid):
|
||||
context["unreviewed_objects"] = unreviewed_model_qs
|
||||
|
||||
context["model_types"] = {
|
||||
"ML Relative Reasoning": "ml-relative-reasoning",
|
||||
"Rule Based Relative Reasoning": "rule-based-relative-reasoning",
|
||||
"ML Relative Reasoning": "mlrr",
|
||||
"Rule Based Relative Reasoning": "rbrr",
|
||||
}
|
||||
|
||||
if s.FLAGS.get("ENVIFORMER", False):
|
||||
@ -777,69 +779,67 @@ def package_models(request, package_uuid):
|
||||
|
||||
model_type = request.POST.get("model-type")
|
||||
|
||||
# Generic fields for ML and Rule Based
|
||||
rule_packages = request.POST.getlist("model-rule-packages")
|
||||
data_packages = request.POST.getlist("model-data-packages")
|
||||
|
||||
# Generic params
|
||||
params = {
|
||||
"package": current_package,
|
||||
"name": name,
|
||||
"description": description,
|
||||
"data_packages": [
|
||||
PackageManager.get_package_by_url(current_user, p) for p in data_packages
|
||||
],
|
||||
}
|
||||
|
||||
if model_type == "enviformer":
|
||||
threshold = float(request.POST.get(f"{model_type}-threshold", 0.5))
|
||||
threshold = float(request.POST.get("model-threshold", 0.5))
|
||||
params["threshold"] = threshold
|
||||
|
||||
mod = EnviFormer.create(current_package, name, description, threshold)
|
||||
mod = EnviFormer.create(**params)
|
||||
elif model_type == "mlrr":
|
||||
# ML Specific
|
||||
threshold = float(request.POST.get("model-threshold", 0.5))
|
||||
# TODO handle additional fingerprinter
|
||||
# fingerprinter = request.POST.get("model-fingerprinter")
|
||||
|
||||
elif model_type == "ml-relative-reasoning" or model_type == "rule-based-relative-reasoning":
|
||||
# Generic fields for ML and Rule Based
|
||||
rule_packages = request.POST.getlist("package-based-relative-reasoning-rule-packages")
|
||||
data_packages = request.POST.getlist("package-based-relative-reasoning-data-packages")
|
||||
eval_packages = request.POST.getlist(
|
||||
"package-based-relative-reasoning-evaluation-packages", []
|
||||
)
|
||||
params["rule_packages"] = [
|
||||
PackageManager.get_package_by_url(current_user, p) for p in rule_packages
|
||||
]
|
||||
|
||||
# Generic params
|
||||
params = {
|
||||
"package": current_package,
|
||||
"name": name,
|
||||
"description": description,
|
||||
"rule_packages": [
|
||||
PackageManager.get_package_by_url(current_user, p) for p in rule_packages
|
||||
],
|
||||
"data_packages": [
|
||||
PackageManager.get_package_by_url(current_user, p) for p in data_packages
|
||||
],
|
||||
"eval_packages": [
|
||||
PackageManager.get_package_by_url(current_user, p) for p in eval_packages
|
||||
],
|
||||
}
|
||||
# App Domain related parameters
|
||||
build_ad = request.POST.get("build-app-domain", False) == "on"
|
||||
num_neighbors = request.POST.get("num-neighbors", 5)
|
||||
reliability_threshold = request.POST.get("reliability-threshold", 0.5)
|
||||
local_compatibility_threshold = request.POST.get("local-compatibility-threshold", 0.5)
|
||||
|
||||
if model_type == "ml-relative-reasoning":
|
||||
# ML Specific
|
||||
threshold = float(request.POST.get(f"{model_type}-threshold", 0.5))
|
||||
# TODO handle additional fingerprinter
|
||||
# fingerprinter = request.POST.get(f"{model_type}-fingerprinter")
|
||||
params["threshold"] = threshold
|
||||
# params['fingerprinter'] = fingerprinter
|
||||
params["build_app_domain"] = build_ad
|
||||
params["app_domain_num_neighbours"] = num_neighbors
|
||||
params["app_domain_reliability_threshold"] = reliability_threshold
|
||||
params["app_domain_local_compatibility_threshold"] = local_compatibility_threshold
|
||||
|
||||
# App Domain related parameters
|
||||
build_ad = request.POST.get("build-app-domain", False) == "on"
|
||||
num_neighbors = request.POST.get("num-neighbors", 5)
|
||||
reliability_threshold = request.POST.get("reliability-threshold", 0.5)
|
||||
local_compatibility_threshold = request.POST.get(
|
||||
"local-compatibility-threshold", 0.5
|
||||
)
|
||||
mod = MLRelativeReasoning.create(**params)
|
||||
elif model_type == "rbrr":
|
||||
params["rule_packages"] = [
|
||||
PackageManager.get_package_by_url(current_user, p) for p in rule_packages
|
||||
]
|
||||
|
||||
params["threshold"] = threshold
|
||||
# params['fingerprinter'] = fingerprinter
|
||||
params["build_app_domain"] = build_ad
|
||||
params["app_domain_num_neighbours"] = num_neighbors
|
||||
params["app_domain_reliability_threshold"] = reliability_threshold
|
||||
params["app_domain_local_compatibility_threshold"] = local_compatibility_threshold
|
||||
|
||||
mod = MLRelativeReasoning.create(**params)
|
||||
else:
|
||||
mod = RuleBasedRelativeReasoning.create(**params)
|
||||
|
||||
from .tasks import build_model
|
||||
|
||||
build_model.delay(mod.pk)
|
||||
mod = RuleBasedRelativeReasoning.create(**params)
|
||||
elif s.FLAGS.get("PLUGINS", False) and model_type in s.CLASSIFIER_PLUGINS.values():
|
||||
pass
|
||||
else:
|
||||
return error(
|
||||
request, "Invalid model type.", f'Model type "{model_type}" is not supported."'
|
||||
)
|
||||
return redirect(mod.url)
|
||||
|
||||
from .tasks import dispatch, build_model
|
||||
|
||||
dispatch(current_user, build_model, mod.pk)
|
||||
|
||||
return redirect(mod.url)
|
||||
else:
|
||||
return HttpResponseNotAllowed(["GET", "POST"])
|
||||
|
||||
@ -867,6 +867,10 @@ def package_model(request, package_uuid, model_uuid):
|
||||
return JsonResponse({"error": f'"{smiles}" is not a valid SMILES'}, status=400)
|
||||
|
||||
if classify:
|
||||
from epdb.tasks import dispatch_eager, predict_simple
|
||||
|
||||
res = dispatch_eager(current_user, predict_simple, current_model.pk, stand_smiles)
|
||||
|
||||
pred_res = current_model.predict(stand_smiles)
|
||||
res = []
|
||||
|
||||
@ -911,9 +915,25 @@ def package_model(request, package_uuid, model_uuid):
|
||||
current_model.delete()
|
||||
return redirect(current_package.url + "/model")
|
||||
elif hidden == "evaluate":
|
||||
from .tasks import evaluate_model
|
||||
from .tasks import dispatch, evaluate_model
|
||||
|
||||
eval_type = request.POST.get("model-evaluation-type")
|
||||
|
||||
if eval_type not in ["sg", "mg"]:
|
||||
return error(
|
||||
request,
|
||||
"Invalid evaluation type",
|
||||
f'Evaluation type "{eval_type}" is not supported. Only "sg" and "mg" are supported.',
|
||||
)
|
||||
|
||||
multigen = eval_type == "mg"
|
||||
|
||||
eval_packages = request.POST.getlist("model-evaluation-packages")
|
||||
eval_package_ids = [
|
||||
PackageManager.get_package_by_url(current_user, p).id for p in eval_packages
|
||||
]
|
||||
dispatch(current_user, evaluate_model, current_model.pk, multigen, eval_package_ids)
|
||||
|
||||
evaluate_model.delay(current_model.pk)
|
||||
return redirect(current_model.url)
|
||||
else:
|
||||
return HttpResponseBadRequest()
|
||||
@ -1253,7 +1273,16 @@ def package_compound_structures(request, package_uuid, compound_uuid):
|
||||
structure_smiles = request.POST.get("structure-smiles")
|
||||
structure_description = request.POST.get("structure-description")
|
||||
|
||||
cs = current_compound.add_structure(structure_smiles, structure_name, structure_description)
|
||||
try:
|
||||
cs = current_compound.add_structure(
|
||||
structure_smiles, structure_name, structure_description
|
||||
)
|
||||
except ValueError:
|
||||
return error(
|
||||
request,
|
||||
"Adding structure failed!",
|
||||
"The structure could not be added as normalized structures don't match!",
|
||||
)
|
||||
|
||||
return redirect(cs.url)
|
||||
|
||||
@ -1456,12 +1485,20 @@ def package_rule(request, package_uuid, rule_uuid):
|
||||
logger.info(
|
||||
f"Rule {current_rule.uuid} returned multiple product sets on {smiles}, picking the first one."
|
||||
)
|
||||
|
||||
smirks = f"{stand_smiles}>>{'.'.join(sorted(res[0]))}"
|
||||
# Some Rules are touching unrelated areas which might result in ~ indicating
|
||||
# any bond (-, =, #). For drawing we need a concrete bond. -> use single bond
|
||||
product_smiles = [x.replace("~", "-") for x in res[0]]
|
||||
smirks = f"{stand_smiles}>>{'.'.join(sorted(product_smiles))}"
|
||||
# Usually the functional groups are a mapping of fg -> count
|
||||
# As we are doing it on the fly here fake a high count to ensure that its properly highlighted
|
||||
educt_functional_groups = {x: 1000 for x in current_rule.reactants_smarts}
|
||||
product_functional_groups = {x: 1000 for x in current_rule.products_smarts}
|
||||
|
||||
if isinstance(current_rule, SimpleAmbitRule):
|
||||
educt_functional_groups = {current_rule.reactants_smarts: 1000}
|
||||
product_functional_groups = {current_rule.products_smarts: 1000}
|
||||
else:
|
||||
educt_functional_groups = {x: 1000 for x in current_rule.reactants_smarts}
|
||||
product_functional_groups = {x: 1000 for x in current_rule.products_smarts}
|
||||
|
||||
return HttpResponse(
|
||||
IndigoUtils.smirks_to_svg(
|
||||
smirks,
|
||||
@ -1531,6 +1568,32 @@ def package_rule(request, package_uuid, rule_uuid):
|
||||
return HttpResponseNotAllowed(["GET", "POST"])
|
||||
|
||||
|
||||
@package_permission_required()
|
||||
def package_rule_enzymelink(request, package_uuid, rule_uuid, enzymelink_uuid):
|
||||
current_user = _anonymous_or_real(request)
|
||||
current_package = PackageManager.get_package_by_id(current_user, package_uuid)
|
||||
current_rule = Rule.objects.get(package=current_package, uuid=rule_uuid)
|
||||
current_enzymelink = EnzymeLink.objects.get(rule=current_rule, uuid=enzymelink_uuid)
|
||||
|
||||
if request.method == "GET":
|
||||
context = get_base_context(request)
|
||||
|
||||
context["title"] = f"enviPath - {current_package.name} - {current_rule.name}"
|
||||
|
||||
context["meta"]["current_package"] = current_package
|
||||
context["object_type"] = "enzyme"
|
||||
context["breadcrumbs"] = breadcrumbs(
|
||||
current_package, "rule", current_rule, "enzymelink", current_enzymelink
|
||||
)
|
||||
|
||||
context["enzymelink"] = current_enzymelink
|
||||
context["current_object"] = current_enzymelink
|
||||
|
||||
return render(request, "objects/enzymelink.html", context)
|
||||
|
||||
return HttpResponseNotAllowed(["GET"])
|
||||
|
||||
|
||||
@package_permission_required()
|
||||
def package_reactions(request, package_uuid):
|
||||
current_user = _anonymous_or_real(request)
|
||||
@ -1768,9 +1831,9 @@ def package_pathways(request, package_uuid):
|
||||
pw.setting = prediction_setting
|
||||
pw.save()
|
||||
|
||||
from .tasks import predict
|
||||
from .tasks import dispatch, predict
|
||||
|
||||
predict.delay(pw.pk, prediction_setting.pk, limit=limit)
|
||||
dispatch(current_user, predict, pw.pk, prediction_setting.pk, limit=limit)
|
||||
|
||||
return redirect(pw.url)
|
||||
|
||||
@ -1889,10 +1952,16 @@ def package_pathway(request, package_uuid, pathway_uuid):
|
||||
if node_url:
|
||||
n = current_pathway.get_node(node_url)
|
||||
|
||||
from .tasks import predict
|
||||
from .tasks import dispatch, predict
|
||||
|
||||
dispatch(
|
||||
current_user,
|
||||
predict,
|
||||
current_pathway.pk,
|
||||
current_pathway.setting.pk,
|
||||
node_pk=n.pk,
|
||||
)
|
||||
|
||||
# Dont delay?
|
||||
predict(current_pathway.pk, current_pathway.setting.pk, node_pk=n.pk)
|
||||
return JsonResponse({"success": current_pathway.url})
|
||||
|
||||
return HttpResponseBadRequest()
|
||||
@ -1969,9 +2038,42 @@ def package_pathway_node(request, package_uuid, pathway_uuid, node_uuid):
|
||||
|
||||
if request.method == "GET":
|
||||
is_image_request = request.GET.get("image")
|
||||
is_highlight_request = request.GET.get("highlight", False)
|
||||
is_highlight_reactivity = request.GET.get("highlightReactivity", False)
|
||||
if is_image_request:
|
||||
if is_image_request == "svg":
|
||||
svg_data = current_node.as_svg
|
||||
# TODO optimize this chain
|
||||
if is_highlight_request:
|
||||
# User functional groups covered by the model training data
|
||||
fgs = {}
|
||||
if current_pathway.setting:
|
||||
if current_pathway.setting.model:
|
||||
if current_pathway.setting.model.app_domain:
|
||||
fgs = current_pathway.setting.model.app_domain.functional_groups
|
||||
|
||||
svg_data = IndigoUtils.mol_to_svg(
|
||||
current_node.default_node_label.smiles, functional_groups=fgs
|
||||
)
|
||||
elif is_highlight_reactivity:
|
||||
# Use reactant smarts to show all reaction sites
|
||||
# set a high count to obtain a strong color
|
||||
ad_data = current_node.get_app_domain_assessment_data()
|
||||
fgs = {}
|
||||
for t in ad_data.get("assessment", {}).get("transformations", []):
|
||||
r = Rule.objects.get(url=t["rule"]["url"])
|
||||
|
||||
if isinstance(r, SimpleAmbitRule):
|
||||
fgs[r.reactants_smarts] = 1000
|
||||
else:
|
||||
for sr in r.srs:
|
||||
fgs[sr.reactants_smarts] = 1000
|
||||
|
||||
svg_data = IndigoUtils.mol_to_svg(
|
||||
current_node.default_node_label.smiles, functional_groups=fgs
|
||||
)
|
||||
else:
|
||||
svg_data = current_node.as_svg
|
||||
|
||||
return HttpResponse(svg_data, content_type="image/svg+xml")
|
||||
|
||||
context = get_base_context(request)
|
||||
@ -2631,6 +2733,24 @@ def setting(request, setting_uuid):
|
||||
pass
|
||||
|
||||
|
||||
def jobs(request):
|
||||
current_user = _anonymous_or_real(request)
|
||||
context = get_base_context(request)
|
||||
|
||||
if request.method == "GET":
|
||||
context["object_type"] = "joblog"
|
||||
context["breadcrumbs"] = [
|
||||
{"Home": s.SERVER_URL},
|
||||
{"Jobs": s.SERVER_URL + "/jobs"},
|
||||
]
|
||||
if current_user.is_superuser:
|
||||
context["jobs"] = JobLog.objects.all().order_by("-created")
|
||||
else:
|
||||
context["jobs"] = JobLog.objects.filter(user=current_user).order_by("-created")
|
||||
|
||||
return render(request, "collections/joblog.html", context)
|
||||
|
||||
|
||||
###########
|
||||
# KETCHER #
|
||||
###########
|
||||
@ -2705,49 +2825,49 @@ def userinfo(request):
|
||||
|
||||
|
||||
# Static Pages
|
||||
def terms_of_use(request):
|
||||
def static_terms_of_use(request):
|
||||
context = get_base_context(request)
|
||||
context["title"] = "enviPath - Terms of Use"
|
||||
return render(request, "static/terms_of_use.html", context)
|
||||
|
||||
|
||||
def privacy_policy(request):
|
||||
def static_privacy_policy(request):
|
||||
context = get_base_context(request)
|
||||
context["title"] = "enviPath - Privacy Policy"
|
||||
return render(request, "static/privacy_policy.html", context)
|
||||
|
||||
|
||||
def cookie_policy(request):
|
||||
def static_cookie_policy(request):
|
||||
context = get_base_context(request)
|
||||
context["title"] = "enviPath - Cookie Policy"
|
||||
return render(request, "static/cookie_policy.html", context)
|
||||
|
||||
|
||||
def about_us(request):
|
||||
def static_about_us(request):
|
||||
context = get_base_context(request)
|
||||
context["title"] = "enviPath - About Us"
|
||||
return render(request, "static/about_us.html", context)
|
||||
|
||||
|
||||
def contact_support(request):
|
||||
def static_contact_support(request):
|
||||
context = get_base_context(request)
|
||||
context["title"] = "enviPath - Contact & Support"
|
||||
return render(request, "static/contact.html", context)
|
||||
|
||||
|
||||
def jobs(request):
|
||||
def static_jobs(request):
|
||||
context = get_base_context(request)
|
||||
context["title"] = "enviPath - Jobs & Careers"
|
||||
return render(request, "static/jobs.html", context)
|
||||
|
||||
|
||||
def cite(request):
|
||||
def static_cite(request):
|
||||
context = get_base_context(request)
|
||||
context["title"] = "enviPath - How to Cite"
|
||||
return render(request, "static/cite.html", context)
|
||||
|
||||
|
||||
def legal(request):
|
||||
def static_legal(request):
|
||||
context = get_base_context(request)
|
||||
context["title"] = "enviPath - Legal Information"
|
||||
return render(request, "static/legal.html", context)
|
||||
|
||||
Reference in New Issue
Block a user