forked from enviPath/enviPy
[Enhancement] Create ML Models (#173)
## Changes - Ability to change the threshold from a command line argument. - Names of data packages included in model name - Names of data, rule and eval packages included in the model description - EnviFormer models are now viewable on the admin site - Ignore CO2 for training and evaluating EnviFormer Co-authored-by: Liam Brydon <62733830+MyCreativityOutlet@users.noreply.github.com> Reviewed-on: enviPath/enviPy#173 Reviewed-by: jebus <lorsbach@envipath.com> Co-authored-by: liambrydon <lbry121@aucklanduni.ac.nz> Co-committed-by: liambrydon <lbry121@aucklanduni.ac.nz>
This commit is contained in:
@ -7,10 +7,11 @@ from epdb.models import MLRelativeReasoning, EnviFormer, Package
|
||||
|
||||
class Command(BaseCommand):
|
||||
"""This command can be run with
|
||||
`python manage.py create_ml_models [model_names] -d [data_packages] OPTIONAL: -e [eval_packages]`
|
||||
For example, to train both EnviFormer and MLRelativeReasoning on BBD and SOIL and evaluate them on SLUDGE
|
||||
the below command would be used:
|
||||
`python manage.py create_ml_models enviformer mlrr -d bbd soil -e sludge
|
||||
`python manage.py create_ml_models [model_names] -d [data_packages] FOR MLRR ONLY: -r [rule_packages]
|
||||
OPTIONAL: -e [eval_packages] -t threshold`
|
||||
For example, to train both EnviFormer and MLRelativeReasoning on BBD and SOIL and evaluate them on SLUDGE with a
|
||||
threshold of 0.6, the below command would be used:
|
||||
`python manage.py create_ml_models enviformer mlrr -d bbd soil -e sludge -t 0.6
|
||||
"""
|
||||
|
||||
def add_arguments(self, parser):
|
||||
@ -34,6 +35,13 @@ class Command(BaseCommand):
|
||||
help="Rule Packages mandatory for MLRR",
|
||||
default=[],
|
||||
)
|
||||
parser.add_argument(
|
||||
"-t",
|
||||
"--threshold",
|
||||
type=float,
|
||||
help="Model prediction threshold",
|
||||
default=0.5,
|
||||
)
|
||||
|
||||
@transaction.atomic
|
||||
def handle(self, *args, **options):
|
||||
@ -67,7 +75,11 @@ class Command(BaseCommand):
|
||||
return packages
|
||||
|
||||
# Iteratively create models in options["model_names"]
|
||||
print(f"Creating models: {options['model_names']}")
|
||||
print(f"Creating models: {options['model_names']}\n"
|
||||
f"Data packages: {options['data_packages']}\n"
|
||||
f"Rule Packages (only for MLRR): {options['rule_packages']}\n"
|
||||
f"Eval Packages: {options['eval_packages']}\n"
|
||||
f"Threshold: {options['threshold']:.2f}")
|
||||
data_packages = decode_packages(options["data_packages"])
|
||||
eval_packages = decode_packages(options["eval_packages"])
|
||||
rule_packages = decode_packages(options["rule_packages"])
|
||||
@ -78,9 +90,10 @@ class Command(BaseCommand):
|
||||
pack,
|
||||
data_packages=data_packages,
|
||||
eval_packages=eval_packages,
|
||||
threshold=0.5,
|
||||
name="EnviFormer - T0.5",
|
||||
description="EnviFormer transformer",
|
||||
threshold=options['threshold'],
|
||||
name=f"EnviFormer - {', '.join(options['data_packages'])} - T{options['threshold']:.2f}",
|
||||
description=f"EnviFormer transformer trained on {options['data_packages']} "
|
||||
f"evaluated on {options['eval_packages']}.",
|
||||
)
|
||||
elif model_name == "mlrr":
|
||||
model = MLRelativeReasoning.create(
|
||||
@ -88,9 +101,10 @@ class Command(BaseCommand):
|
||||
rule_packages=rule_packages,
|
||||
data_packages=data_packages,
|
||||
eval_packages=eval_packages,
|
||||
threshold=0.5,
|
||||
name="ECC - BBD - T0.5",
|
||||
description="ML Relative Reasoning",
|
||||
threshold=options['threshold'],
|
||||
name=f"ECC - {', '.join(options['data_packages'])} - T{options['threshold']:.2f}",
|
||||
description=f"ML Relative Reasoning trained on {options['data_packages']} with rules from "
|
||||
f"{options['rule_packages']} and evaluated on {options['eval_packages']}.",
|
||||
)
|
||||
else:
|
||||
raise ValueError(f"Cannot create model of type {model_name}, unknown model type")
|
||||
|
||||
Reference in New Issue
Block a user