forked from enviPath/enviPy
[Feature] Basic logging of Jobs, Model Evaluation (#169)
Co-authored-by: Tim Lorsbach <tim@lorsba.ch> Reviewed-on: enviPath/enviPy#169
This commit is contained in:
121
epdb/tasks.py
121
epdb/tasks.py
@ -1,10 +1,13 @@
|
||||
import logging
|
||||
from typing import Optional
|
||||
from celery.utils.functional import LRUCache
|
||||
from celery import shared_task
|
||||
from epdb.models import Pathway, Node, EPModel, Setting
|
||||
from epdb.logic import SPathway
|
||||
from datetime import datetime
|
||||
from typing import Callable, Optional
|
||||
from uuid import uuid4
|
||||
|
||||
from celery import shared_task
|
||||
from celery.utils.functional import LRUCache
|
||||
|
||||
from epdb.logic import SPathway
|
||||
from epdb.models import EPModel, JobLog, Node, Package, Pathway, Setting, User
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
ML_CACHE = LRUCache(3) # Cache the three most recent ML models to reduce load times.
|
||||
@ -16,6 +19,40 @@ def get_ml_model(model_pk: int):
|
||||
return ML_CACHE[model_pk]
|
||||
|
||||
|
||||
def dispatch_eager(user: "User", job: Callable, *args, **kwargs):
|
||||
try:
|
||||
x = job(*args, **kwargs)
|
||||
log = JobLog()
|
||||
log.user = user
|
||||
log.task_id = uuid4()
|
||||
log.job_name = job.__name__
|
||||
log.status = "SUCCESS"
|
||||
log.done_at = datetime.now()
|
||||
log.task_result = str(x) if x else None
|
||||
log.save()
|
||||
|
||||
return x
|
||||
except Exception as e:
|
||||
logger.exception(e)
|
||||
raise e
|
||||
|
||||
|
||||
def dispatch(user: "User", job: Callable, *args, **kwargs):
|
||||
try:
|
||||
x = job.delay(*args, **kwargs)
|
||||
log = JobLog()
|
||||
log.user = user
|
||||
log.task_id = x.task_id
|
||||
log.job_name = job.__name__
|
||||
log.status = "INITIAL"
|
||||
log.save()
|
||||
|
||||
return x.result
|
||||
except Exception as e:
|
||||
logger.exception(e)
|
||||
raise e
|
||||
|
||||
|
||||
@shared_task(queue="background")
|
||||
def mul(a, b):
|
||||
return a * b
|
||||
@ -33,17 +70,55 @@ def send_registration_mail(user_pk: int):
|
||||
pass
|
||||
|
||||
|
||||
@shared_task(queue="model")
|
||||
def build_model(model_pk: int):
|
||||
@shared_task(bind=True, queue="model")
|
||||
def build_model(self, model_pk: int):
|
||||
mod = EPModel.objects.get(id=model_pk)
|
||||
mod.build_dataset()
|
||||
mod.build_model()
|
||||
|
||||
if JobLog.objects.filter(task_id=self.request.id).exists():
|
||||
JobLog.objects.filter(task_id=self.request.id).update(status="RUNNING", task_result=mod.url)
|
||||
|
||||
try:
|
||||
mod.build_dataset()
|
||||
mod.build_model()
|
||||
except Exception as e:
|
||||
if JobLog.objects.filter(task_id=self.request.id).exists():
|
||||
JobLog.objects.filter(task_id=self.request.id).update(
|
||||
status="FAILED", task_result=mod.url
|
||||
)
|
||||
|
||||
raise e
|
||||
|
||||
if JobLog.objects.filter(task_id=self.request.id).exists():
|
||||
JobLog.objects.filter(task_id=self.request.id).update(status="SUCCESS", task_result=mod.url)
|
||||
|
||||
return mod.url
|
||||
|
||||
|
||||
@shared_task(queue="model")
|
||||
def evaluate_model(model_pk: int):
|
||||
@shared_task(bind=True, queue="model")
|
||||
def evaluate_model(self, model_pk: int, multigen: bool, package_pks: Optional[list] = None):
|
||||
packages = None
|
||||
|
||||
if package_pks:
|
||||
packages = Package.objects.filter(pk__in=package_pks)
|
||||
|
||||
mod = EPModel.objects.get(id=model_pk)
|
||||
mod.evaluate_model()
|
||||
if JobLog.objects.filter(task_id=self.request.id).exists():
|
||||
JobLog.objects.filter(task_id=self.request.id).update(status="RUNNING", task_result=mod.url)
|
||||
|
||||
try:
|
||||
mod.evaluate_model(multigen, eval_packages=packages)
|
||||
except Exception as e:
|
||||
if JobLog.objects.filter(task_id=self.request.id).exists():
|
||||
JobLog.objects.filter(task_id=self.request.id).update(
|
||||
status="FAILED", task_result=mod.url
|
||||
)
|
||||
|
||||
raise e
|
||||
|
||||
if JobLog.objects.filter(task_id=self.request.id).exists():
|
||||
JobLog.objects.filter(task_id=self.request.id).update(status="SUCCESS", task_result=mod.url)
|
||||
|
||||
return mod.url
|
||||
|
||||
|
||||
@shared_task(queue="model")
|
||||
@ -52,9 +127,13 @@ def retrain(model_pk: int):
|
||||
mod.retrain()
|
||||
|
||||
|
||||
@shared_task(queue="predict")
|
||||
@shared_task(bind=True, queue="predict")
|
||||
def predict(
|
||||
pw_pk: int, pred_setting_pk: int, limit: Optional[int] = None, node_pk: Optional[int] = None
|
||||
self,
|
||||
pw_pk: int,
|
||||
pred_setting_pk: int,
|
||||
limit: Optional[int] = None,
|
||||
node_pk: Optional[int] = None,
|
||||
) -> Pathway:
|
||||
pw = Pathway.objects.get(id=pw_pk)
|
||||
setting = Setting.objects.get(id=pred_setting_pk)
|
||||
@ -65,6 +144,9 @@ def predict(
|
||||
pw.kv.update(**{"status": "running"})
|
||||
pw.save()
|
||||
|
||||
if JobLog.objects.filter(task_id=self.request.id).exists():
|
||||
JobLog.objects.filter(task_id=self.request.id).update(status="RUNNING", task_result=pw.url)
|
||||
|
||||
try:
|
||||
# regular prediction
|
||||
if limit is not None:
|
||||
@ -89,7 +171,18 @@ def predict(
|
||||
except Exception as e:
|
||||
pw.kv.update({"status": "failed"})
|
||||
pw.save()
|
||||
|
||||
if JobLog.objects.filter(task_id=self.request.id).exists():
|
||||
JobLog.objects.filter(task_id=self.request.id).update(
|
||||
status="FAILED", task_result=pw.url
|
||||
)
|
||||
|
||||
raise e
|
||||
|
||||
pw.kv.update(**{"status": "completed"})
|
||||
pw.save()
|
||||
|
||||
if JobLog.objects.filter(task_id=self.request.id).exists():
|
||||
JobLog.objects.filter(task_id=self.request.id).update(status="SUCCESS", task_result=pw.url)
|
||||
|
||||
return pw.url
|
||||
|
||||
Reference in New Issue
Block a user