forked from enviPath/enviPy
[Chore] Linted Files (#150)
Co-authored-by: Tim Lorsbach <tim@lorsba.ch> Reviewed-on: enviPath/enviPy#150
This commit is contained in:
@ -12,11 +12,28 @@ class Command(BaseCommand):
|
||||
the below command would be used:
|
||||
`python manage.py create_ml_models enviformer mlrr -d bbd soil -e sludge
|
||||
"""
|
||||
|
||||
def add_arguments(self, parser):
|
||||
parser.add_argument("model_names", nargs="+", type=str, help="The names of models to train. Options are: enviformer, mlrr")
|
||||
parser.add_argument("-d", "--data-packages", nargs="+", type=str, help="Packages for training")
|
||||
parser.add_argument("-e", "--eval-packages", nargs="*", type=str, help="Packages for evaluation", default=[])
|
||||
parser.add_argument("-r", "--rule-packages", nargs="*", type=str, help="Rule Packages mandatory for MLRR", default=[])
|
||||
parser.add_argument(
|
||||
"model_names",
|
||||
nargs="+",
|
||||
type=str,
|
||||
help="The names of models to train. Options are: enviformer, mlrr",
|
||||
)
|
||||
parser.add_argument(
|
||||
"-d", "--data-packages", nargs="+", type=str, help="Packages for training"
|
||||
)
|
||||
parser.add_argument(
|
||||
"-e", "--eval-packages", nargs="*", type=str, help="Packages for evaluation", default=[]
|
||||
)
|
||||
parser.add_argument(
|
||||
"-r",
|
||||
"--rule-packages",
|
||||
nargs="*",
|
||||
type=str,
|
||||
help="Rule Packages mandatory for MLRR",
|
||||
default=[],
|
||||
)
|
||||
|
||||
@transaction.atomic
|
||||
def handle(self, *args, **options):
|
||||
@ -28,7 +45,9 @@ class Command(BaseCommand):
|
||||
sludge = Package.objects.filter(name="EAWAG-SLUDGE")[0]
|
||||
sediment = Package.objects.filter(name="EAWAG-SEDIMENT")[0]
|
||||
except IndexError:
|
||||
raise IndexError("Can't find correct packages. They should be created with the bootstrap command")
|
||||
raise IndexError(
|
||||
"Can't find correct packages. They should be created with the bootstrap command"
|
||||
)
|
||||
|
||||
def decode_packages(package_list):
|
||||
"""Decode package strings into their respective packages"""
|
||||
@ -52,15 +71,27 @@ class Command(BaseCommand):
|
||||
data_packages = decode_packages(options["data_packages"])
|
||||
eval_packages = decode_packages(options["eval_packages"])
|
||||
rule_packages = decode_packages(options["rule_packages"])
|
||||
for model_name in options['model_names']:
|
||||
for model_name in options["model_names"]:
|
||||
model_name = model_name.lower()
|
||||
if model_name == "enviformer" and s.ENVIFORMER_PRESENT:
|
||||
model = EnviFormer.create(pack, data_packages=data_packages, eval_packages=eval_packages, threshold=0.5,
|
||||
name="EnviFormer - T0.5", description="EnviFormer transformer")
|
||||
model = EnviFormer.create(
|
||||
pack,
|
||||
data_packages=data_packages,
|
||||
eval_packages=eval_packages,
|
||||
threshold=0.5,
|
||||
name="EnviFormer - T0.5",
|
||||
description="EnviFormer transformer",
|
||||
)
|
||||
elif model_name == "mlrr":
|
||||
model = MLRelativeReasoning.create(package=pack, rule_packages=rule_packages,
|
||||
data_packages=data_packages, eval_packages=eval_packages, threshold=0.5,
|
||||
name='ECC - BBD - T0.5', description='ML Relative Reasoning')
|
||||
model = MLRelativeReasoning.create(
|
||||
package=pack,
|
||||
rule_packages=rule_packages,
|
||||
data_packages=data_packages,
|
||||
eval_packages=eval_packages,
|
||||
threshold=0.5,
|
||||
name="ECC - BBD - T0.5",
|
||||
description="ML Relative Reasoning",
|
||||
)
|
||||
else:
|
||||
raise ValueError(f"Cannot create model of type {model_name}, unknown model type")
|
||||
# Build the dataset for the model, train it, evaluate it and save it
|
||||
|
||||
Reference in New Issue
Block a user