forked from enviPath/enviPy
Merge remote-tracking branch 'origin/develop' into enhancement/dataset
# Conflicts: # epdb/models.py # tests/test_enviformer.py # tests/test_model.py
This commit is contained in:
@ -192,7 +192,7 @@ class FormatConverter(object):
|
||||
return smiles
|
||||
|
||||
@staticmethod
|
||||
def standardize(smiles, remove_stereo=False):
|
||||
def standardize(smiles, remove_stereo=False, canonicalize_tautomers=False):
|
||||
# Taken from https://bitsilla.com/blog/2021/06/standardizing-a-molecule-using-rdkit/
|
||||
# follows the steps in
|
||||
# https://github.com/greglandrum/RSC_OpenScience_Standardization_202104/blob/main/MolStandardize%20pieces.ipynb
|
||||
@ -210,19 +210,21 @@ class FormatConverter(object):
|
||||
uncharger = (
|
||||
rdMolStandardize.Uncharger()
|
||||
) # annoying, but necessary as no convenience method exists
|
||||
uncharged_parent_clean_mol = uncharger.uncharge(parent_clean_mol)
|
||||
res_mol = uncharger.uncharge(parent_clean_mol)
|
||||
|
||||
# note that no attempt is made at reionization at this step
|
||||
# nor at ionization at some pH (rdkit has no pKa caculator)
|
||||
# the main aim to to represent all molecules from different sources
|
||||
# in a (single) standard way, for use in ML, catalogue, etc.
|
||||
# te = rdMolStandardize.TautomerEnumerator() # idem
|
||||
# taut_uncharged_parent_clean_mol = te.Canonicalize(uncharged_parent_clean_mol)
|
||||
|
||||
if remove_stereo:
|
||||
Chem.RemoveStereochemistry(uncharged_parent_clean_mol)
|
||||
Chem.RemoveStereochemistry(res_mol)
|
||||
|
||||
return Chem.MolToSmiles(uncharged_parent_clean_mol, kekuleSmiles=True)
|
||||
if canonicalize_tautomers:
|
||||
te = rdMolStandardize.TautomerEnumerator() # idem
|
||||
res_mol = te.Canonicalize(res_mol)
|
||||
|
||||
return Chem.MolToSmiles(res_mol, kekuleSmiles=True)
|
||||
|
||||
@staticmethod
|
||||
def neutralize_smiles(smiles):
|
||||
@ -370,6 +372,76 @@ class FormatConverter(object):
|
||||
|
||||
return parsed_smiles, errors
|
||||
|
||||
@staticmethod
|
||||
def smiles_covered_by(
|
||||
l_smiles: List[str],
|
||||
r_smiles: List[str],
|
||||
standardize: bool = True,
|
||||
canonicalize_tautomers: bool = True,
|
||||
) -> bool:
|
||||
"""
|
||||
Check if all SMILES in the left list are covered by (contained in) the right list.
|
||||
|
||||
This function performs a subset check to determine if every chemical structure
|
||||
represented in l_smiles has a corresponding representation in r_smiles.
|
||||
|
||||
Args:
|
||||
l_smiles (List[str]): List of SMILES strings to check for coverage.
|
||||
r_smiles (List[str]): List of SMILES strings that should contain all l_smiles.
|
||||
standardize (bool, optional): Whether to standardize SMILES before comparison.
|
||||
Defaults to True. When True, applies FormatConverter.standardize() to
|
||||
normalize representations for accurate comparison.
|
||||
canonicalize_tautomers (bool, optional): Whether to canonicalize tautomers
|
||||
Defaults to False. When True, applies rdMolStandardize.TautomerEnumerator().Canonicalize(res_mol)
|
||||
to the compounds before comparison.
|
||||
Returns:
|
||||
bool: True if all SMILES in l_smiles are found in r_smiles (i.e., l_smiles
|
||||
is a subset of r_smiles), False otherwise.
|
||||
|
||||
Note:
|
||||
- Comparison treats lists as sets, ignoring duplicates and order
|
||||
- Failed standardization attempts are silently ignored (original SMILES used)
|
||||
- This is a one-directional check: l_smiles ⊆ r_smiles
|
||||
- For bidirectional equality, both directions must be checked separately
|
||||
|
||||
Example:
|
||||
>>> FormatConverter.smiles_covered_by(["CCO", "CC"], ["CCO", "CC", "CCC"])
|
||||
True
|
||||
>>> FormatConverter.smiles_covered_by(["CCO", "CCCC"], ["CCO", "CC", "CCC"])
|
||||
False
|
||||
"""
|
||||
|
||||
standardized_l_smiles = []
|
||||
|
||||
if standardize:
|
||||
for smi in l_smiles:
|
||||
try:
|
||||
smi = FormatConverter.standardize(
|
||||
smi, canonicalize_tautomers=canonicalize_tautomers
|
||||
)
|
||||
except Exception:
|
||||
# :shrug:
|
||||
# logger.debug(f'Standardizing SMILES failed for {smi}')
|
||||
pass
|
||||
standardized_l_smiles.append(smi)
|
||||
else:
|
||||
standardized_l_smiles = l_smiles
|
||||
|
||||
standardized_r_smiles = []
|
||||
if standardize:
|
||||
for smi in r_smiles:
|
||||
try:
|
||||
smi = FormatConverter.standardize(smi)
|
||||
except Exception:
|
||||
# :shrug:
|
||||
# logger.debug(f'Standardizing SMILES failed for {smi}')
|
||||
pass
|
||||
standardized_r_smiles.append(smi)
|
||||
else:
|
||||
standardized_r_smiles = r_smiles
|
||||
|
||||
return len(set(standardized_l_smiles).difference(set(standardized_r_smiles))) == 0
|
||||
|
||||
|
||||
class Standardizer(ABC):
|
||||
def __init__(self, name):
|
||||
|
||||
@ -9,36 +9,37 @@ from collections import defaultdict
|
||||
from datetime import datetime
|
||||
from enum import Enum
|
||||
from types import NoneType
|
||||
from typing import Dict, Any, List
|
||||
from typing import Any, Dict, List
|
||||
|
||||
from django.db import transaction
|
||||
from envipy_additional_information import Interval, EnviPyModel
|
||||
from envipy_additional_information import NAME_MAPPING
|
||||
from envipy_additional_information import NAME_MAPPING, EnviPyModel, Interval
|
||||
from pydantic import BaseModel, HttpUrl
|
||||
|
||||
from epdb.models import (
|
||||
Package,
|
||||
Compound,
|
||||
CompoundStructure,
|
||||
SimpleRule,
|
||||
Edge,
|
||||
EnviFormer,
|
||||
EPModel,
|
||||
ExternalDatabase,
|
||||
ExternalIdentifier,
|
||||
License,
|
||||
MLRelativeReasoning,
|
||||
Node,
|
||||
Package,
|
||||
ParallelRule,
|
||||
Pathway,
|
||||
PluginModel,
|
||||
Reaction,
|
||||
Rule,
|
||||
RuleBasedRelativeReasoning,
|
||||
Scenario,
|
||||
SequentialRule,
|
||||
SimpleAmbitRule,
|
||||
SimpleRDKitRule,
|
||||
ParallelRule,
|
||||
SequentialRule,
|
||||
Reaction,
|
||||
Pathway,
|
||||
Node,
|
||||
Edge,
|
||||
Scenario,
|
||||
EPModel,
|
||||
MLRelativeReasoning,
|
||||
RuleBasedRelativeReasoning,
|
||||
EnviFormer,
|
||||
PluginModel,
|
||||
ExternalIdentifier,
|
||||
ExternalDatabase,
|
||||
License,
|
||||
SimpleRule,
|
||||
)
|
||||
from utilities.chem import FormatConverter
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
@ -48,7 +49,7 @@ class HTMLGenerator:
|
||||
|
||||
@staticmethod
|
||||
def generate_html(additional_information: "EnviPyModel", prefix="") -> str:
|
||||
from typing import get_origin, get_args, Union
|
||||
from typing import Union, get_args, get_origin
|
||||
|
||||
if isinstance(additional_information, type):
|
||||
clz_name = additional_information.__name__
|
||||
@ -1171,3 +1172,89 @@ class PackageImporter:
|
||||
url=identifier_data.get("url", ""),
|
||||
is_primary=identifier_data.get("is_primary", False),
|
||||
)
|
||||
|
||||
|
||||
class PathwayUtils:
|
||||
def __init__(self, pathway: "Pathway"):
|
||||
self.pathway = pathway
|
||||
|
||||
@staticmethod
|
||||
def _get_products(smiles: str, rules: List["Rule"]):
|
||||
educt_rule_products: Dict[str, Dict[str, List[str]]] = defaultdict(
|
||||
lambda: defaultdict(list)
|
||||
)
|
||||
|
||||
for r in rules:
|
||||
product_sets = r.apply(smiles)
|
||||
for product_set in product_sets:
|
||||
for product in product_set:
|
||||
educt_rule_products[smiles][r.url].append(product)
|
||||
|
||||
return educt_rule_products
|
||||
|
||||
def find_missing_rules(self, rules: List["Rule"]):
|
||||
print(f"Processing {self.pathway.name}")
|
||||
# compute products for each node / rule combination in the pathway
|
||||
educt_rule_products = defaultdict(lambda: defaultdict(list))
|
||||
|
||||
for node in self.pathway.nodes:
|
||||
educt_rule_products.update(**self._get_products(node.default_node_label.smiles, rules))
|
||||
|
||||
# loop through edges and determine reactions that can't be constructed by
|
||||
# any of the rules or a combination of two rules in a chained fashion
|
||||
|
||||
res: Dict[str, List["Rule"]] = dict()
|
||||
|
||||
for edge in self.pathway.edges:
|
||||
found = False
|
||||
reaction = edge.edge_label
|
||||
|
||||
educts = [cs for cs in reaction.educts.all()]
|
||||
products = [cs.smiles for cs in reaction.products.all()]
|
||||
rule_chain = []
|
||||
|
||||
for educt in educts:
|
||||
educt = educt.smiles
|
||||
triggered_rules = list(educt_rule_products.get(educt, {}).keys())
|
||||
for triggered_rule in triggered_rules:
|
||||
if rule_products := educt_rule_products[educt][triggered_rule]:
|
||||
# check if this rule covers the reaction
|
||||
if FormatConverter.smiles_covered_by(
|
||||
products, rule_products, standardize=True, canonicalize_tautomers=True
|
||||
):
|
||||
found = True
|
||||
else:
|
||||
# Check if another prediction step would cover the reaction
|
||||
for product in rule_products:
|
||||
prod_rule_products = self._get_products(product, rules)
|
||||
prod_triggered_rules = list(
|
||||
prod_rule_products.get(product, {}).keys()
|
||||
)
|
||||
for prod_triggered_rule in prod_triggered_rules:
|
||||
if second_step_products := prod_rule_products[product][
|
||||
prod_triggered_rule
|
||||
]:
|
||||
if FormatConverter.smiles_covered_by(
|
||||
products,
|
||||
second_step_products,
|
||||
standardize=True,
|
||||
canonicalize_tautomers=True,
|
||||
):
|
||||
rule_chain.append(
|
||||
(
|
||||
triggered_rule,
|
||||
Rule.objects.get(url=triggered_rule).name,
|
||||
)
|
||||
)
|
||||
rule_chain.append(
|
||||
(
|
||||
prod_triggered_rule,
|
||||
Rule.objects.get(url=prod_triggered_rule).name,
|
||||
)
|
||||
)
|
||||
res[edge.url] = rule_chain
|
||||
|
||||
if not found:
|
||||
res[edge.url] = rule_chain
|
||||
|
||||
return res
|
||||
|
||||
Reference in New Issue
Block a user