forked from enviPath/enviPy
Current Dev State
This commit is contained in:
185
static/js/ketcher2/node_modules/svgpath/lib/a2c.js
generated
vendored
Normal file
185
static/js/ketcher2/node_modules/svgpath/lib/a2c.js
generated
vendored
Normal file
@ -0,0 +1,185 @@
|
||||
// Convert an arc to a sequence of cubic bézier curves
|
||||
//
|
||||
'use strict';
|
||||
|
||||
|
||||
var TAU = Math.PI * 2;
|
||||
|
||||
|
||||
/* eslint-disable space-infix-ops */
|
||||
|
||||
// Calculate an angle between two vectors
|
||||
//
|
||||
function vector_angle(ux, uy, vx, vy) {
|
||||
var sign = (ux * vy - uy * vx < 0) ? -1 : 1;
|
||||
var umag = Math.sqrt(ux * ux + uy * uy);
|
||||
var vmag = Math.sqrt(ux * ux + uy * uy);
|
||||
var dot = ux * vx + uy * vy;
|
||||
var div = dot / (umag * vmag);
|
||||
|
||||
// rounding errors, e.g. -1.0000000000000002 can screw up this
|
||||
if (div > 1.0) { div = 1.0; }
|
||||
if (div < -1.0) { div = -1.0; }
|
||||
|
||||
return sign * Math.acos(div);
|
||||
}
|
||||
|
||||
|
||||
// Convert from endpoint to center parameterization,
|
||||
// see http://www.w3.org/TR/SVG11/implnote.html#ArcImplementationNotes
|
||||
//
|
||||
// Return [cx, cy, theta1, delta_theta]
|
||||
//
|
||||
function get_arc_center(x1, y1, x2, y2, fa, fs, rx, ry, sin_phi, cos_phi) {
|
||||
// Step 1.
|
||||
//
|
||||
// Moving an ellipse so origin will be the middlepoint between our two
|
||||
// points. After that, rotate it to line up ellipse axes with coordinate
|
||||
// axes.
|
||||
//
|
||||
var x1p = cos_phi*(x1-x2)/2 + sin_phi*(y1-y2)/2;
|
||||
var y1p = -sin_phi*(x1-x2)/2 + cos_phi*(y1-y2)/2;
|
||||
|
||||
var rx_sq = rx * rx;
|
||||
var ry_sq = ry * ry;
|
||||
var x1p_sq = x1p * x1p;
|
||||
var y1p_sq = y1p * y1p;
|
||||
|
||||
// Step 2.
|
||||
//
|
||||
// Compute coordinates of the centre of this ellipse (cx', cy')
|
||||
// in the new coordinate system.
|
||||
//
|
||||
var radicant = (rx_sq * ry_sq) - (rx_sq * y1p_sq) - (ry_sq * x1p_sq);
|
||||
|
||||
if (radicant < 0) {
|
||||
// due to rounding errors it might be e.g. -1.3877787807814457e-17
|
||||
radicant = 0;
|
||||
}
|
||||
|
||||
radicant /= (rx_sq * y1p_sq) + (ry_sq * x1p_sq);
|
||||
radicant = Math.sqrt(radicant) * (fa === fs ? -1 : 1);
|
||||
|
||||
var cxp = radicant * rx/ry * y1p;
|
||||
var cyp = radicant * -ry/rx * x1p;
|
||||
|
||||
// Step 3.
|
||||
//
|
||||
// Transform back to get centre coordinates (cx, cy) in the original
|
||||
// coordinate system.
|
||||
//
|
||||
var cx = cos_phi*cxp - sin_phi*cyp + (x1+x2)/2;
|
||||
var cy = sin_phi*cxp + cos_phi*cyp + (y1+y2)/2;
|
||||
|
||||
// Step 4.
|
||||
//
|
||||
// Compute angles (theta1, delta_theta).
|
||||
//
|
||||
var v1x = (x1p - cxp) / rx;
|
||||
var v1y = (y1p - cyp) / ry;
|
||||
var v2x = (-x1p - cxp) / rx;
|
||||
var v2y = (-y1p - cyp) / ry;
|
||||
|
||||
var theta1 = vector_angle(1, 0, v1x, v1y);
|
||||
var delta_theta = vector_angle(v1x, v1y, v2x, v2y);
|
||||
|
||||
if (fs === 0 && delta_theta > 0) {
|
||||
delta_theta -= TAU;
|
||||
}
|
||||
if (fs === 1 && delta_theta < 0) {
|
||||
delta_theta += TAU;
|
||||
}
|
||||
|
||||
return [ cx, cy, theta1, delta_theta ];
|
||||
}
|
||||
|
||||
//
|
||||
// Approximate one unit arc segment with bézier curves,
|
||||
// see http://math.stackexchange.com/questions/873224
|
||||
//
|
||||
function approximate_unit_arc(theta1, delta_theta) {
|
||||
var alpha = 4/3 * Math.tan(delta_theta/4);
|
||||
|
||||
var x1 = Math.cos(theta1);
|
||||
var y1 = Math.sin(theta1);
|
||||
var x2 = Math.cos(theta1 + delta_theta);
|
||||
var y2 = Math.sin(theta1 + delta_theta);
|
||||
|
||||
return [ x1, y1, x1 - y1*alpha, y1 + x1*alpha, x2 + y2*alpha, y2 - x2*alpha, x2, y2 ];
|
||||
}
|
||||
|
||||
module.exports = function a2c(x1, y1, x2, y2, fa, fs, rx, ry, phi) {
|
||||
var sin_phi = Math.sin(phi * TAU / 360);
|
||||
var cos_phi = Math.cos(phi * TAU / 360);
|
||||
|
||||
// Make sure radii are valid
|
||||
//
|
||||
var x1p = cos_phi*(x1-x2)/2 + sin_phi*(y1-y2)/2;
|
||||
var y1p = -sin_phi*(x1-x2)/2 + cos_phi*(y1-y2)/2;
|
||||
|
||||
if (x1p === 0 && y1p === 0) {
|
||||
// we're asked to draw line to itself
|
||||
return [];
|
||||
}
|
||||
|
||||
if (rx === 0 || ry === 0) {
|
||||
// one of the radii is zero
|
||||
return [];
|
||||
}
|
||||
|
||||
|
||||
// Compensate out-of-range radii
|
||||
//
|
||||
rx = Math.abs(rx);
|
||||
ry = Math.abs(ry);
|
||||
|
||||
var lambda = (x1p * x1p) / (rx * rx) + (y1p * y1p) / (ry * ry);
|
||||
if (lambda > 1) {
|
||||
rx *= Math.sqrt(lambda);
|
||||
ry *= Math.sqrt(lambda);
|
||||
}
|
||||
|
||||
|
||||
// Get center parameters (cx, cy, theta1, delta_theta)
|
||||
//
|
||||
var cc = get_arc_center(x1, y1, x2, y2, fa, fs, rx, ry, sin_phi, cos_phi);
|
||||
|
||||
var result = [];
|
||||
var theta1 = cc[2];
|
||||
var delta_theta = cc[3];
|
||||
|
||||
// Split an arc to multiple segments, so each segment
|
||||
// will be less than τ/4 (= 90°)
|
||||
//
|
||||
var segments = Math.max(Math.ceil(Math.abs(delta_theta) / (TAU / 4)), 1);
|
||||
delta_theta /= segments;
|
||||
|
||||
for (var i = 0; i < segments; i++) {
|
||||
result.push(approximate_unit_arc(theta1, delta_theta));
|
||||
theta1 += delta_theta;
|
||||
}
|
||||
|
||||
// We have a bezier approximation of a unit circle,
|
||||
// now need to transform back to the original ellipse
|
||||
//
|
||||
return result.map(function (curve) {
|
||||
for (var i = 0; i < curve.length; i += 2) {
|
||||
var x = curve[i + 0];
|
||||
var y = curve[i + 1];
|
||||
|
||||
// scale
|
||||
x *= rx;
|
||||
y *= ry;
|
||||
|
||||
// rotate
|
||||
var xp = cos_phi*x - sin_phi*y;
|
||||
var yp = sin_phi*x + cos_phi*y;
|
||||
|
||||
// translate
|
||||
curve[i + 0] = xp + cc[0];
|
||||
curve[i + 1] = yp + cc[1];
|
||||
}
|
||||
|
||||
return curve;
|
||||
});
|
||||
};
|
||||
Reference in New Issue
Block a user