forked from enviPath/enviPy
[Enhancement] Refactor Dataset (#184)
# Summary
I have introduced a new base `class Dataset` in `ml.py` which all datasets should subclass. It stores the dataset as a polars DataFrame with the column names and number of columns determined by the subclass. It implements generic methods such as `add_row`, `at`, `limit` and dataset saving. It also details abstract methods required by the subclasses. These include `X`, `y` and `generate_dataset`.
There are two subclasses that currently exist. `RuleBasedDataset` for the MLRR models and `EnviFormerDataset` for the enviFormer models.
# Old Dataset to New RuleBasedDataset Functionality Translation
- [x] \_\_init\_\_
- self.columns and self.num_labels moved to base Dataset class
- self.data moved to base class with name self.df along with initialising from list or from another DataFrame
- struct_features, triggered and observed remain the same
- [x] \_block\_indices
- function moved to base Dataset class
- [x] structure_id
- stays in RuleBasedDataset, now requires an index for the row of interest
- [x] add_row
- moved to base Dataset class, now calls add_rows so one or more rows can be added at a time
- [x] times_triggered
- stays in RuleBasedDataset, now does a look up using polars df.filter
- [x] struct_features (see init)
- [x] triggered (see init)
- [x] observed (see init)
- [x] at
- removed in favour of indexing with getitem
- [x] limit
- removed in favour of indexing with getitem
- [x] classification_dataset
- stays in RuleBasedDataset, largely the same just with new dataset construction using add_rows
- [x] generate_dataset
- stays in RuleBasedDataset, largely the same just with new dataset construction using add_rows
- [x] X
- moved to base Dataset as @abstract_method, RuleBasedDataset implementation functionally the same but uses polars
- [x] trig
- stays in RuleBasedDataset, functionally the same but uses polars
- [x] y
- moved to base Dataset as @abstract_method, RuleBasedDataset implementation functionally the same but uses polars
- [x] \_\_get_item\_\_
- moved to base dataset, now passes item to the dataframe for polars to handle
- [x] to_arff
- stays in RuleBasedDataset, functionally the same but uses polars
- [x] \_\_repr\_\_
- moved to base dataset
- [x] \_\_iter\_\_
- moved to base Dataset, now uses polars iter_rows
# Base Dataset class Features
The following functions are available in the base Dataset class
- init - Create the dataset from a list of columns and data in format list of list. Or can create a dataset from a polars Dataframe, this is essential for recreating itself during indexing. Can create an empty dataset by just passing column names.
- add_rows - Add rows to the Dataset, we check that the new data length is the same but it is presumed that the column order matches the existing dataframe
- add_row - Add one row, see add_rows
- block_indices - Returns the column indices that start with the given prefix
- columns - Property, returns dataframe.columns
- shape - Property, returns dataframe.shape
- X - Abstract method to be implemented by the subclasses, it should represent the input to a ML model
- y - Abstract method to be implemented by the subclasses, it should represent the target for a ML model
- generate_dataset - Abstract and static method to be implemented by the subclasses, should return an initialised subclass of Dataset
- iter - returns the iterable from dataframe.iter_rows()
- getitem - passes the item argument to the dataframe. If the result of indexing the dataframe is another dataframe, the new dataframe is packaged into a new Dataset of the same subclass. If the result of indexing is something else (int, float, polar Series) return the result.
- save - Pickle and save the dataframe to the given path
- load - Static method to load the dataset from the given path
- to_numpy - returns the dataframe as a numpy array. Required for compatibility with training of the ECC model
- repr - return a representation of the dataset
- len - return the length of the dataframe
- iter_rows - Return dataframe.iterrows with arguments passed through. Mainly used to get the named iterable which returns rows of the dataframe as dict of column names: column values instead of tuple of column values.
- filter - pass to dataframe.filter and recreates self with the result
- select - pass to dataframe.select and recreates self with the result
- with_columns - pass to dataframe.with_columns and recreates self with the result
- sort - pass to dataframe.sort and recreates self with the result
- item - pass to dataframe.item
- fill_nan - fill the dataframe nan's with value
- height - Property, returns the height (number of rows) of the dataframe
- [x] App domain
- [x] MACCS alternatives
Co-authored-by: Liam Brydon <62733830+MyCreativityOutlet@users.noreply.github.com>
Reviewed-on: enviPath/enviPy#184
Reviewed-by: jebus <lorsbach@envipath.com>
Co-authored-by: liambrydon <lbry121@aucklanduni.ac.nz>
Co-committed-by: liambrydon <lbry121@aucklanduni.ac.nz>
This commit is contained in:
@ -1,8 +1,10 @@
|
||||
import os.path
|
||||
from tempfile import TemporaryDirectory
|
||||
from django.test import TestCase
|
||||
|
||||
from epdb.logic import PackageManager
|
||||
from epdb.models import Reaction, Compound, User, Rule
|
||||
from utilities.ml import Dataset
|
||||
from epdb.models import Reaction, Compound, User, Rule, Package
|
||||
from utilities.chem import FormatConverter
|
||||
from utilities.ml import RuleBasedDataset, EnviFormerDataset
|
||||
|
||||
|
||||
class DatasetTest(TestCase):
|
||||
@ -41,12 +43,108 @@ class DatasetTest(TestCase):
|
||||
super(DatasetTest, cls).setUpClass()
|
||||
cls.user = User.objects.get(username="anonymous")
|
||||
cls.package = PackageManager.create_package(cls.user, "Anon Test Package", "No Desc")
|
||||
cls.BBD_SUBSET = Package.objects.get(name="Fixtures")
|
||||
|
||||
def test_smoke(self):
|
||||
def test_generate_dataset(self):
|
||||
"""Test generating dataset does not crash"""
|
||||
self.generate_rule_dataset()
|
||||
|
||||
def test_indexing(self):
|
||||
"""Test indexing a few different ways to check for crashes"""
|
||||
ds, reactions, rules = self.generate_rule_dataset()
|
||||
print(ds[5])
|
||||
print(ds[2, 5])
|
||||
print(ds[3:6, 2:8])
|
||||
print(ds[:2, "structure_id"])
|
||||
|
||||
def test_add_rows(self):
|
||||
"""Test adding one row and adding multiple rows"""
|
||||
ds, reactions, rules = self.generate_rule_dataset()
|
||||
ds.add_row(list(ds.df.row(1)))
|
||||
ds.add_rows([list(ds.df.row(i)) for i in range(5)])
|
||||
|
||||
def test_times_triggered(self):
|
||||
"""Check getting times triggered for a rule id"""
|
||||
ds, reactions, rules = self.generate_rule_dataset()
|
||||
print(ds.times_triggered(rules[0].uuid))
|
||||
|
||||
def test_block_indices(self):
|
||||
"""Test the usages of _block_indices"""
|
||||
ds, reactions, rules = self.generate_rule_dataset()
|
||||
print(ds.struct_features())
|
||||
print(ds.triggered())
|
||||
print(ds.observed())
|
||||
|
||||
def test_structure_id(self):
|
||||
"""Check getting a structure id from row index"""
|
||||
ds, reactions, rules = self.generate_rule_dataset()
|
||||
print(ds.structure_id(0))
|
||||
|
||||
def test_x(self):
|
||||
"""Test getting X portion of the dataframe"""
|
||||
ds, reactions, rules = self.generate_rule_dataset()
|
||||
print(ds.X().df.head())
|
||||
|
||||
def test_trig(self):
|
||||
"""Test getting the triggered portion of the dataframe"""
|
||||
ds, reactions, rules = self.generate_rule_dataset()
|
||||
print(ds.trig().df.head())
|
||||
|
||||
def test_y(self):
|
||||
"""Test getting the Y portion of the dataframe"""
|
||||
ds, reactions, rules = self.generate_rule_dataset()
|
||||
print(ds.y().df.head())
|
||||
|
||||
def test_classification_dataset(self):
|
||||
"""Test making the classification dataset"""
|
||||
ds, reactions, rules = self.generate_rule_dataset()
|
||||
compounds = [c.default_structure for c in Compound.objects.filter(package=self.BBD_SUBSET)]
|
||||
class_ds, products = ds.classification_dataset(compounds, rules)
|
||||
print(class_ds.df.head(5))
|
||||
print(products[:5])
|
||||
|
||||
def test_extra_features(self):
|
||||
reactions = [r for r in Reaction.objects.filter(package=self.BBD_SUBSET)]
|
||||
applicable_rules = [r for r in Rule.objects.filter(package=self.BBD_SUBSET)]
|
||||
ds = RuleBasedDataset.generate_dataset(reactions, applicable_rules, feat_funcs=[FormatConverter.maccs, FormatConverter.morgan])
|
||||
print(ds.shape)
|
||||
|
||||
def test_to_arff(self):
|
||||
"""Test exporting the arff version of the dataset"""
|
||||
ds, reactions, rules = self.generate_rule_dataset()
|
||||
ds.to_arff("dataset_arff_test.arff")
|
||||
|
||||
def test_save_load(self):
|
||||
"""Test saving and loading dataset"""
|
||||
with TemporaryDirectory() as tmpdir:
|
||||
ds, reactions, rules = self.generate_rule_dataset()
|
||||
ds.save(os.path.join(tmpdir, "save_dataset.pkl"))
|
||||
ds_loaded = RuleBasedDataset.load(os.path.join(tmpdir, "save_dataset.pkl"))
|
||||
self.assertTrue(ds.df.equals(ds_loaded.df))
|
||||
|
||||
def test_dataset_example(self):
|
||||
"""Test with a concrete example checking dataset size"""
|
||||
reactions = [r for r in Reaction.objects.filter(package=self.package)]
|
||||
applicable_rules = [self.rule1]
|
||||
|
||||
ds = Dataset.generate_dataset(reactions, applicable_rules)
|
||||
ds = RuleBasedDataset.generate_dataset(reactions, applicable_rules)
|
||||
|
||||
self.assertEqual(len(ds.y()), 1)
|
||||
self.assertEqual(sum(ds.y()[0]), 1)
|
||||
self.assertEqual(ds.y().df.item(), 1)
|
||||
|
||||
def test_enviformer_dataset(self):
|
||||
ds, reactions = self.generate_enviformer_dataset()
|
||||
print(ds.X().head())
|
||||
print(ds.y().head())
|
||||
|
||||
def generate_rule_dataset(self):
|
||||
"""Generate a RuleBasedDataset from test package data"""
|
||||
reactions = [r for r in Reaction.objects.filter(package=self.BBD_SUBSET)]
|
||||
applicable_rules = [r for r in Rule.objects.filter(package=self.BBD_SUBSET)]
|
||||
ds = RuleBasedDataset.generate_dataset(reactions, applicable_rules)
|
||||
return ds, reactions, applicable_rules
|
||||
|
||||
def generate_enviformer_dataset(self):
|
||||
reactions = [r for r in Reaction.objects.filter(package=self.BBD_SUBSET)]
|
||||
ds = EnviFormerDataset.generate_dataset(reactions)
|
||||
return ds, reactions
|
||||
|
||||
Reference in New Issue
Block a user