work towards #120

This commit is contained in:
Liam Brydon
2025-11-03 15:24:28 +13:00
parent 8166df6f39
commit ff51e48f90
5 changed files with 263 additions and 274 deletions

View File

@ -2886,7 +2886,7 @@ class ApplicabilityDomain(EnviPathModel):
rule_idx, probs, neighbour_datasets rule_idx, probs, neighbour_datasets
) )
neighbours_per_rule[rule_idx] = [ neighbours_per_rule[rule_idx] = [
CompoundStructure.objects.get(uuid=ds[1].structure_id()) CompoundStructure.objects.get(uuid=ds.structure_id(1))
for ds in neighbour_datasets for ds in neighbour_datasets
] ]
neighbor_probs_per_rule[rule_idx] = [ neighbor_probs_per_rule[rule_idx] = [

View File

@ -27,10 +27,11 @@ dependencies = [
"scikit-learn>=1.6.1", "scikit-learn>=1.6.1",
"sentry-sdk[django]>=2.32.0", "sentry-sdk[django]>=2.32.0",
"setuptools>=80.8.0", "setuptools>=80.8.0",
"polars==1.35.1",
] ]
[tool.uv.sources] [tool.uv.sources]
enviformer = { git = "ssh://git@git.envipath.com/enviPath/enviformer.git", rev = "v0.1.2" } enviformer = { git = "ssh://git@git.envipath.com/enviPath/enviformer.git", branch = "enhancement/dataset_support" }
envipy-plugins = { git = "ssh://git@git.envipath.com/enviPath/enviPy-plugins.git", rev = "v0.1.0" } envipy-plugins = { git = "ssh://git@git.envipath.com/enviPath/enviPy-plugins.git", rev = "v0.1.0" }
envipy-additional-information = { git = "ssh://git@git.envipath.com/enviPath/enviPy-additional-information.git", rev = "v0.1.7"} envipy-additional-information = { git = "ssh://git@git.envipath.com/enviPath/enviPy-additional-information.git", rev = "v0.1.7"}
envipy-ambit = { git = "ssh://git@git.envipath.com/enviPath/enviPy-ambit.git" } envipy-ambit = { git = "ssh://git@git.envipath.com/enviPath/enviPy-ambit.git" }

View File

@ -1,7 +1,7 @@
from django.test import TestCase from django.test import TestCase
from epdb.logic import PackageManager from epdb.logic import PackageManager
from epdb.models import Reaction, Compound, User, Rule from epdb.models import Reaction, Compound, User, Rule, Package
from utilities.ml import RuleBasedDataset from utilities.ml import RuleBasedDataset
@ -41,12 +41,88 @@ class DatasetTest(TestCase):
super(DatasetTest, cls).setUpClass() super(DatasetTest, cls).setUpClass()
cls.user = User.objects.get(username="anonymous") cls.user = User.objects.get(username="anonymous")
cls.package = PackageManager.create_package(cls.user, "Anon Test Package", "No Desc") cls.package = PackageManager.create_package(cls.user, "Anon Test Package", "No Desc")
cls.BBD_SUBSET = Package.objects.get(name="Fixtures")
def test_smoke(self): def test_generate_dataset(self):
"""Test generating dataset does not crash"""
self.generate_dataset()
def test_indexing(self):
"""Test indexing a few different ways to check for crashes"""
ds, reactions, rules = self.generate_dataset()
print(ds[5])
print(ds[2, 5])
print(ds[3:6, 2:8])
print(ds[:2, "structure_id"])
def test_add_rows(self):
"""Test adding one row and adding multiple rows"""
ds, reactions, rules = self.generate_dataset()
ds.add_row(list(ds.df.row(1)))
ds.add_rows([list(ds.df.row(i)) for i in range(5)])
def test_times_triggered(self):
"""Check getting times triggered for a rule id"""
ds, reactions, rules = self.generate_dataset()
print(ds.times_triggered(rules[0].uuid))
def test_block_indices(self):
"""Test the usages of _block_indices"""
ds, reactions, rules = self.generate_dataset()
print(ds.struct_features())
print(ds.triggered())
print(ds.observed())
def test_structure_id(self):
"""Check getting a structure id from row index"""
ds, reactions, rules = self.generate_dataset()
print(ds.structure_id(0))
def test_x(self):
"""Test getting X portion of the dataframe"""
ds, reactions, rules = self.generate_dataset()
print(ds.X().df.head())
def test_trig(self):
"""Test getting the triggered portion of the dataframe"""
ds, reactions, rules = self.generate_dataset()
print(ds.trig().df.head())
def test_y(self):
"""Test getting the Y portion of the dataframe"""
ds, reactions, rules = self.generate_dataset()
print(ds.y().df.head())
def test_classification_dataset(self):
"""Test making the classification dataset"""
ds, reactions, rules = self.generate_dataset()
compounds = [c.default_structure for c in Compound.objects.filter(package=self.BBD_SUBSET)]
class_ds, products = ds.classification_dataset(compounds, rules)
print(class_ds.df.head(5))
print(products[:5])
def test_to_arff(self):
"""Test exporting the arff version of the dataset"""
ds, reactions, rules = self.generate_dataset()
ds.to_arff("dataset_arff_test.arff")
def test_save_load(self):
"""Test saving and loading dataset"""
ds, reactions, rules = self.generate_dataset()
def test_dataset_example(self):
"""Test with a concrete example checking dataset size"""
reactions = [r for r in Reaction.objects.filter(package=self.package)] reactions = [r for r in Reaction.objects.filter(package=self.package)]
applicable_rules = [self.rule1] applicable_rules = [self.rule1]
ds = RuleBasedDataset.generate_dataset(reactions, applicable_rules) ds = RuleBasedDataset.generate_dataset(reactions, applicable_rules)
self.assertEqual(len(ds.y()), 1) self.assertEqual(len(ds.y()), 1)
self.assertEqual(sum(ds.y()[0]), 1) self.assertEqual(ds.y().df.item(), 1)
def generate_dataset(self):
"""Generate a RuleBasedDataset from test package data"""
reactions = [r for r in Reaction.objects.filter(package=self.BBD_SUBSET)]
applicable_rules = [r for r in Rule.objects.filter(package=self.BBD_SUBSET)]
ds = RuleBasedDataset.generate_dataset(reactions, applicable_rules)
return ds, reactions, applicable_rules

View File

@ -30,42 +30,47 @@ if TYPE_CHECKING:
class Dataset(ABC): class Dataset(ABC):
def __init__(self, columns: List[str] = None, data: List[List[str | int | float]] | pl.DataFrame = None): def __init__(self, columns: List[str] = None, data: List[List[str | int | float]] | pl.DataFrame = None):
if isinstance(data, pl.DataFrame): if isinstance(data, pl.DataFrame): # Allows for re-creation of self in cases like indexing with __getitem__
self.df = data self.df = data
else: else:
# Build either an empty dataframe with columns or fill it with list of list data
if data is not None and len(columns) != len(data[0]): if data is not None and len(columns) != len(data[0]):
raise ValueError(f"Header and Data are not aligned {len(columns)} vs. {len(data[0])}") raise ValueError(f"Header and Data are not aligned {len(columns)} columns vs. {len(data[0])} columns")
if columns is None: if columns is None:
raise ValueError("Columns can't be None if data is not already a DataFrame") raise ValueError("Columns can't be None if data is not already a DataFrame")
self.df = pl.DataFrame(data=data, schema=columns) self.df = pl.DataFrame(data=data, schema=columns, orient="row", infer_schema_length=None)
def add_rows(self, rows: List[List[str | int | float]]): def add_rows(self, rows: List[List[str | int | float]]):
"""Add rows to the dataset. Extends the polars dataframe stored in self"""
if len(self.columns) != len(rows[0]): if len(self.columns) != len(rows[0]):
raise ValueError(f"Header and Data are not aligned {len(self.columns)} vs. {len(rows[0])}") raise ValueError(f"Header and Data are not aligned {len(self.columns)} columns vs. {len(rows[0])} columns")
new_rows = pl.DataFrame(data=rows, schema=self.columns) new_rows = pl.DataFrame(data=rows, schema=self.columns, orient="row", infer_schema_length=None)
self.df.extend(new_rows) self.df.extend(new_rows)
def add_row(self, row: List[str | int | float]): def add_row(self, row: List[str | int | float]):
"""See add_rows"""
self.add_rows([row]) self.add_rows([row])
def _block_indices(self, prefix) -> Tuple[int, int]: def _block_indices(self, prefix) -> Tuple[int, int]:
"""Find the start and end indexes in column labels that has the prefix"""
indices: List[int] = [] indices: List[int] = []
for i, feature in enumerate(self.columns): for i, feature in enumerate(self.columns):
if feature.startswith(prefix): if feature.startswith(prefix):
indices.append(i) indices.append(i)
return min(indices), max(indices) return min(indices, default=None), max(indices, default=None)
@property @property
def columns(self) -> List[str]: def columns(self) -> List[str]:
"""Use the polars dataframe columns"""
return self.df.columns return self.df.columns
@abstractmethod @abstractmethod
def X(self): def X(self, **kwargs):
pass pass
@abstractmethod @abstractmethod
def y(self): def y(self, **kwargs):
pass pass
@staticmethod @staticmethod
@ -73,11 +78,26 @@ class Dataset(ABC):
def generate_dataset(reactions, *args, **kwargs): def generate_dataset(reactions, *args, **kwargs):
pass pass
def at(self, position: int) -> RuleBasedDataset: def at(self, position: int) -> Dataset:
return RuleBasedDataset(self.columns, self.num_labels, self.df[position]) """See __getitem__"""
return self[position]
def limit(self, limit: int) -> Dataset:
"""See __getitem__"""
return self[:limit]
def __iter__(self): def __iter__(self):
return (self.at(i) for i, _ in enumerate(self.data)) """Use polars iter_rows for iterating over the dataset"""
return self.df.iter_rows()
def __getitem__(self, item):
"""Item is passed to polars allowing for advanced indexing.
See https://docs.pola.rs/api/python/stable/reference/dataframe/api/polars.DataFrame.__getitem__.html#polars.DataFrame.__getitem__"""
res = self.df[item]
if isinstance(res, pl.DataFrame): # If we get a dataframe back from indexing make new self with res dataframe
return self.__class__(data=self.df[item])
else: # If we don't get a dataframe back (likely base type, int, str, float etc.) return the item
return res
def save(self, path: "Path"): def save(self, path: "Path"):
import pickle import pickle
@ -86,35 +106,61 @@ class Dataset(ABC):
pickle.dump(self, fh) pickle.dump(self, fh)
@staticmethod @staticmethod
def load(path: "str | Path") -> "RuleBasedDataset": def load(path: "str | Path") -> "Dataset":
import pickle import pickle
return pickle.load(open(path, "rb")) return pickle.load(open(path, "rb"))
def __repr__(self):
return (
f"<{self.__class__.__name__} #rows={len(self.df)} #cols={len(self.columns)}>"
)
class NewRuleBasedDataset(Dataset): def __len__(self):
def __init__(self, num_labels, columns=None, data=None): return len(self.df)
class RuleBasedDataset(Dataset):
def __init__(self, num_labels=None, columns=None, data=None):
super().__init__(columns, data) super().__init__(columns, data)
self.num_labels: int = num_labels self.num_labels: int = num_labels if num_labels else sum([1 for c in self.columns if "trig_" in c])
self.num_features: int = len(self.columns) - self.num_labels self.num_features: int = len(self.columns) - self.num_labels
self._struct_features: Tuple[int, int] = self._block_indices("feature_")
self._triggered: Tuple[int, int] = self._block_indices("trig_")
self._observed: Tuple[int, int] = self._block_indices("obs_")
def times_triggered(self, rule_uuid) -> int: def times_triggered(self, rule_uuid) -> int:
return self.df.filter(pl.col(f"trig_{rule_uuid}") == 1).height return self.df.filter(pl.col(f"trig_{rule_uuid}") == 1).height
def struct_features(self) -> Tuple[int, int]: def struct_features(self) -> Tuple[int, int]:
return self._block_indices("feature_") return self._struct_features
def triggered(self) -> Tuple[int, int]: def triggered(self) -> Tuple[int, int]:
return self._block_indices("trig_") return self._triggered
def observed(self) -> Tuple[int, int]: def observed(self) -> Tuple[int, int]:
return self._block_indices("obs_") return self._observed
def X(self): def structure_id(self, index: int):
pass return self.df.item(index, "structure_id")
def y(self): def X(self, exclude_id_col=True, na_replacement=0):
pass res = self[:, 1 if exclude_id_col else 0: len(self.columns) - self.num_labels]
if na_replacement is not None:
res.df = res.df.fill_null(na_replacement)
return res
def trig(self, na_replacement=0):
res = self[:, self._triggered[0]: self._triggered[1]]
if na_replacement is not None:
res.df = res.df.fill_null(na_replacement)
return res
def y(self, na_replacement=0):
res = self[:, len(self.columns) - self.num_labels:]
if na_replacement is not None:
res.df = res.df.fill_null(na_replacement)
return res
@staticmethod @staticmethod
def generate_dataset(reactions, applicable_rules, educts_only=True): def generate_dataset(reactions, applicable_rules, educts_only=True):
@ -178,7 +224,6 @@ class NewRuleBasedDataset(Dataset):
[f"feature_{i}" for i, _ in enumerate(FormatConverter.maccs(compounds[0].smiles))] + [f"feature_{i}" for i, _ in enumerate(FormatConverter.maccs(compounds[0].smiles))] +
[f"trig_{r.uuid}" for r in applicable_rules] + [f"trig_{r.uuid}" for r in applicable_rules] +
[f"obs_{r.uuid}" for r in applicable_rules]) [f"obs_{r.uuid}" for r in applicable_rules])
ds = NewRuleBasedDataset(len(applicable_rules), ds_columns)
rows = [] rows = []
for i, comp in enumerate(compounds): for i, comp in enumerate(compounds):
@ -201,77 +246,18 @@ class NewRuleBasedDataset(Dataset):
else: else:
obs.append(0) obs.append(0)
rows.append([str(comp.uuid)] + feat + trig + obs) rows.append([str(comp.uuid)] + feat + trig + obs)
ds.add_rows(rows) ds = RuleBasedDataset(len(applicable_rules), ds_columns, data=rows)
return ds return ds
def __getitem__(self, item):
pass
class RuleBasedDataset(Dataset):
def __init__(
self, columns: List[str], num_labels: int, data: List[List[str | int | float]] = None
):
self.columns: List[str] = columns
self.num_labels: int = num_labels
if data is None:
self.data: List[List[str | int | float]] = list()
else:
self.data = data
self.num_features: int = len(columns) - self.num_labels
self._struct_features: Tuple[int, int] = self._block_indices("feature_")
self._triggered: Tuple[int, int] = self._block_indices("trig_")
self._observed: Tuple[int, int] = self._block_indices("obs_")
def _block_indices(self, prefix) -> Tuple[int, int]:
indices: List[int] = []
for i, feature in enumerate(self.columns):
if feature.startswith(prefix):
indices.append(i)
return min(indices), max(indices)
def structure_id(self):
return self.data[0][0]
def add_row(self, row: List[str | int | float]):
if len(self.columns) != len(row):
raise ValueError(f"Header and Data are not aligned {len(self.columns)} vs. {len(row)}")
self.data.append(row)
def times_triggered(self, rule_uuid) -> int:
idx = self.columns.index(f"trig_{rule_uuid}")
times_triggered = 0
for row in self.data:
if row[idx] == 1:
times_triggered += 1
return times_triggered
def struct_features(self) -> Tuple[int, int]:
return self._struct_features
def triggered(self) -> Tuple[int, int]:
return self._triggered
def observed(self) -> Tuple[int, int]:
return self._observed
def at(self, position: int) -> RuleBasedDataset:
return RuleBasedDataset(self.columns, self.num_labels, [self.data[position]])
def limit(self, limit: int) -> RuleBasedDataset:
return RuleBasedDataset(self.columns, self.num_labels, self.data[:limit])
def classification_dataset( def classification_dataset(
self, structures: List[str | "CompoundStructure"], applicable_rules: List["Rule"] self, structures: List[str | "CompoundStructure"], applicable_rules: List["Rule"]
) -> Tuple[RuleBasedDataset, List[List[PredictionResult]]]: ) -> Tuple[RuleBasedDataset, List[List[PredictionResult]]]:
classify_data = [] classify_data = []
classify_products = [] classify_products = []
ds_columns = (["structure_id"] +
[f"feature_{i}" for i, _ in enumerate(FormatConverter.maccs(structures[0].smiles))] +
[f"trig_{r.uuid}" for r in applicable_rules] +
[f"obs_{r.uuid}" for r in applicable_rules])
for struct in structures: for struct in structures:
if isinstance(struct, str): if isinstance(struct, str):
struct_id = None struct_id = None
@ -296,171 +282,8 @@ class RuleBasedDataset(Dataset):
classify_data.append([struct_id] + features + trig + ([-1] * len(trig))) classify_data.append([struct_id] + features + trig + ([-1] * len(trig)))
classify_products.append(prods) classify_products.append(prods)
ds = RuleBasedDataset(len(applicable_rules), ds_columns, data=classify_data)
return RuleBasedDataset( return ds, classify_products
columns=self.columns, num_labels=self.num_labels, data=classify_data
), classify_products
@staticmethod
def generate_dataset(
reactions: List["Reaction"], applicable_rules: List["Rule"], educts_only: bool = True
) -> RuleBasedDataset:
_structures = set()
for r in reactions:
for e in r.educts.all():
_structures.add(e)
if not educts_only:
for e in r.products:
_structures.add(e)
compounds = sorted(_structures, key=lambda x: x.url)
triggered: Dict[str, Set[str]] = defaultdict(set)
observed: Set[str] = set()
# Apply rules on collected compounds and store tps
for i, comp in enumerate(compounds):
logger.debug(f"{i + 1}/{len(compounds)}...")
for rule in applicable_rules:
product_sets = rule.apply(comp.smiles)
if len(product_sets) == 0:
continue
key = f"{rule.uuid} + {comp.uuid}"
if key in triggered:
logger.info(f"{key} already present. Duplicate reaction?")
for prod_set in product_sets:
for smi in prod_set:
try:
smi = FormatConverter.standardize(smi, remove_stereo=True)
except Exception:
# :shrug:
logger.debug(f"Standardizing SMILES failed for {smi}")
pass
triggered[key].add(smi)
for i, r in enumerate(reactions):
logger.debug(f"{i + 1}/{len(reactions)}...")
if len(r.educts.all()) != 1:
logger.debug(f"Skipping {r.url} as it has {len(r.educts.all())} substrates!")
continue
for comp in r.educts.all():
for rule in applicable_rules:
key = f"{rule.uuid} + {comp.uuid}"
if key not in triggered:
continue
# standardize products from reactions for comparison
standardized_products = []
for cs in r.products.all():
smi = cs.smiles
try:
smi = FormatConverter.standardize(smi, remove_stereo=True)
except Exception as e:
# :shrug:
logger.debug(f"Standardizing SMILES failed for {smi}")
pass
standardized_products.append(smi)
if len(set(standardized_products).difference(triggered[key])) == 0:
observed.add(key)
else:
pass
ds = None
for i, comp in enumerate(compounds):
# Features
feat = FormatConverter.maccs(comp.smiles)
trig = []
obs = []
for rule in applicable_rules:
key = f"{rule.uuid} + {comp.uuid}"
# Check triggered
if key in triggered:
trig.append(1)
else:
trig.append(0)
# Check obs
if key in observed:
obs.append(1)
elif key not in triggered:
obs.append(None)
else:
obs.append(0)
if ds is None:
header = (
["structure_id"]
+ [f"feature_{i}" for i, _ in enumerate(feat)]
+ [f"trig_{r.uuid}" for r in applicable_rules]
+ [f"obs_{r.uuid}" for r in applicable_rules]
)
ds = RuleBasedDataset(header, len(applicable_rules))
ds.add_row([str(comp.uuid)] + feat + trig + obs)
return ds
def X(self, exclude_id_col=True, na_replacement=0):
res = self.__getitem__(
(slice(None), slice(1 if exclude_id_col else 0, len(self.columns) - self.num_labels))
)
if na_replacement is not None:
res = [[x if x is not None else na_replacement for x in row] for row in res]
return res
def trig(self, na_replacement=0):
res = self.__getitem__((slice(None), slice(self._triggered[0], self._triggered[1])))
if na_replacement is not None:
res = [[x if x is not None else na_replacement for x in row] for row in res]
return res
def y(self, na_replacement=0):
res = self.__getitem__((slice(None), slice(len(self.columns) - self.num_labels, None)))
if na_replacement is not None:
res = [[x if x is not None else na_replacement for x in row] for row in res]
return res
def __getitem__(self, key):
if not isinstance(key, tuple):
raise TypeError("Dataset must be indexed with dataset[rows, columns]")
row_key, col_key = key
# Normalize rows
if isinstance(row_key, int):
rows = [self.data[row_key]]
else:
rows = self.data[row_key]
# Normalize columns
if isinstance(col_key, int):
res = [row[col_key] for row in rows]
else:
res = [
[row[i] for i in range(*col_key.indices(len(row)))]
if isinstance(col_key, slice)
else [row[i] for i in col_key]
for row in rows
]
return res
def to_arff(self, path: "Path"): def to_arff(self, path: "Path"):
arff = f"@relation 'enviPy-dataset: -C {self.num_labels}'\n" arff = f"@relation 'enviPy-dataset: -C {self.num_labels}'\n"
@ -472,7 +295,7 @@ class RuleBasedDataset(Dataset):
arff += f"@attribute {c} {{0,1}}\n" arff += f"@attribute {c} {{0,1}}\n"
arff += "\n@data\n" arff += "\n@data\n"
for d in self.data: for d in self:
ys = ",".join([str(v if v is not None else "?") for v in d[-self.num_labels :]]) ys = ",".join([str(v if v is not None else "?") for v in d[-self.num_labels :]])
xs = ",".join([str(v if v is not None else "?") for v in d[: self.num_features]]) xs = ",".join([str(v if v is not None else "?") for v in d[: self.num_features]])
arff += f"{ys},{xs}\n" arff += f"{ys},{xs}\n"
@ -481,14 +304,10 @@ class RuleBasedDataset(Dataset):
fh.write(arff) fh.write(arff)
fh.flush() fh.flush()
def __repr__(self):
return (
f"<Dataset #rows={len(self.data)} #cols={len(self.columns)} #labels={self.num_labels}>"
)
class EnviFormerDataset(Dataset): class EnviFormerDataset(Dataset):
def __init__(self, educts, products): def __init__(self, educts, products):
super().__init__()
assert len(educts) == len(products), "Can't have unequal length educts and products" assert len(educts) == len(products), "Can't have unequal length educts and products"
@staticmethod @staticmethod

115
uv.lock generated
View File

@ -1,5 +1,5 @@
version = 1 version = 1
revision = 3 revision = 2
requires-python = ">=3.12" requires-python = ">=3.12"
[[package]] [[package]]
@ -176,6 +176,19 @@ wheels = [
{ url = "https://files.pythonhosted.org/packages/c9/af/0dcccc7fdcdf170f9a1585e5e96b6fb0ba1749ef6be8c89a6202284759bd/celery-5.5.3-py3-none-any.whl", hash = "sha256:0b5761a07057acee94694464ca482416b959568904c9dfa41ce8413a7d65d525", size = 438775, upload-time = "2025-06-01T11:08:09.94Z" }, { url = "https://files.pythonhosted.org/packages/c9/af/0dcccc7fdcdf170f9a1585e5e96b6fb0ba1749ef6be8c89a6202284759bd/celery-5.5.3-py3-none-any.whl", hash = "sha256:0b5761a07057acee94694464ca482416b959568904c9dfa41ce8413a7d65d525", size = 438775, upload-time = "2025-06-01T11:08:09.94Z" },
] ]
[[package]]
name = "celery-stubs"
version = "0.1.3"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "mypy" },
{ name = "typing-extensions" },
]
sdist = { url = "https://files.pythonhosted.org/packages/98/14/b853ada8706a3a301396566b6dd405d1cbb24bff756236a12a01dbe766a4/celery-stubs-0.1.3.tar.gz", hash = "sha256:0fb5345820f8a2bd14e6ffcbef2d10181e12e40f8369f551d7acc99d8d514919", size = 46583, upload-time = "2023-02-10T02:20:11.837Z" }
wheels = [
{ url = "https://files.pythonhosted.org/packages/1c/7a/4ab2347d13f1f59d10a7337feb9beb002664119f286036785284c6bec150/celery_stubs-0.1.3-py3-none-any.whl", hash = "sha256:dfb9ad27614a8af028b2055bb4a4ae99ca5e9a8d871428a506646d62153218d7", size = 89085, upload-time = "2023-02-10T02:20:09.409Z" },
]
[[package]] [[package]]
name = "certifi" name = "certifi"
version = "2025.10.5" version = "2025.10.5"
@ -525,7 +538,7 @@ wheels = [
[[package]] [[package]]
name = "enviformer" name = "enviformer"
version = "0.1.0" version = "0.1.0"
source = { git = "ssh://git@git.envipath.com/enviPath/enviformer.git?rev=v0.1.2#3f28f60cfa1df814cf7559303b5130933efa40ae" } source = { git = "ssh://git@git.envipath.com/enviPath/enviformer.git?branch=enhancement%2Fdataset_support#8edc3f30c46749af30c033a4faf9abe062b47970" }
dependencies = [ dependencies = [
{ name = "joblib" }, { name = "joblib" },
{ name = "lightning" }, { name = "lightning" },
@ -546,7 +559,6 @@ dependencies = [
{ name = "django-ninja" }, { name = "django-ninja" },
{ name = "django-oauth-toolkit" }, { name = "django-oauth-toolkit" },
{ name = "django-polymorphic" }, { name = "django-polymorphic" },
{ name = "django-stubs" },
{ name = "enviformer" }, { name = "enviformer" },
{ name = "envipy-additional-information" }, { name = "envipy-additional-information" },
{ name = "envipy-ambit" }, { name = "envipy-ambit" },
@ -554,6 +566,7 @@ dependencies = [
{ name = "epam-indigo" }, { name = "epam-indigo" },
{ name = "gunicorn" }, { name = "gunicorn" },
{ name = "networkx" }, { name = "networkx" },
{ name = "polars" },
{ name = "psycopg2-binary" }, { name = "psycopg2-binary" },
{ name = "python-dotenv" }, { name = "python-dotenv" },
{ name = "rdkit" }, { name = "rdkit" },
@ -566,6 +579,8 @@ dependencies = [
[package.optional-dependencies] [package.optional-dependencies]
dev = [ dev = [
{ name = "celery-stubs" },
{ name = "django-stubs" },
{ name = "poethepoet" }, { name = "poethepoet" },
{ name = "pre-commit" }, { name = "pre-commit" },
{ name = "ruff" }, { name = "ruff" },
@ -577,15 +592,16 @@ ms-login = [
[package.metadata] [package.metadata]
requires-dist = [ requires-dist = [
{ name = "celery", specifier = ">=5.5.2" }, { name = "celery", specifier = ">=5.5.2" },
{ name = "celery-stubs", marker = "extra == 'dev'", specifier = "==0.1.3" },
{ name = "django", specifier = ">=5.2.1" }, { name = "django", specifier = ">=5.2.1" },
{ name = "django-extensions", specifier = ">=4.1" }, { name = "django-extensions", specifier = ">=4.1" },
{ name = "django-model-utils", specifier = ">=5.0.0" }, { name = "django-model-utils", specifier = ">=5.0.0" },
{ name = "django-ninja", specifier = ">=1.4.1" }, { name = "django-ninja", specifier = ">=1.4.1" },
{ name = "django-oauth-toolkit", specifier = ">=3.0.1" }, { name = "django-oauth-toolkit", specifier = ">=3.0.1" },
{ name = "django-polymorphic", specifier = ">=4.1.0" }, { name = "django-polymorphic", specifier = ">=4.1.0" },
{ name = "django-stubs", specifier = ">=5.2.4" }, { name = "django-stubs", marker = "extra == 'dev'", specifier = ">=5.2.4" },
{ name = "enviformer", git = "ssh://git@git.envipath.com/enviPath/enviformer.git?rev=v0.1.2" }, { name = "enviformer", git = "ssh://git@git.envipath.com/enviPath/enviformer.git?branch=enhancement%2Fdataset_support" },
{ name = "envipy-additional-information", git = "ssh://git@git.envipath.com/enviPath/enviPy-additional-information.git?rev=v0.1.4" }, { name = "envipy-additional-information", git = "ssh://git@git.envipath.com/enviPath/enviPy-additional-information.git?rev=v0.1.7" },
{ name = "envipy-ambit", git = "ssh://git@git.envipath.com/enviPath/enviPy-ambit.git" }, { name = "envipy-ambit", git = "ssh://git@git.envipath.com/enviPath/enviPy-ambit.git" },
{ name = "envipy-plugins", git = "ssh://git@git.envipath.com/enviPath/enviPy-plugins.git?rev=v0.1.0" }, { name = "envipy-plugins", git = "ssh://git@git.envipath.com/enviPath/enviPy-plugins.git?rev=v0.1.0" },
{ name = "epam-indigo", specifier = ">=1.30.1" }, { name = "epam-indigo", specifier = ">=1.30.1" },
@ -593,6 +609,7 @@ requires-dist = [
{ name = "msal", marker = "extra == 'ms-login'", specifier = ">=1.33.0" }, { name = "msal", marker = "extra == 'ms-login'", specifier = ">=1.33.0" },
{ name = "networkx", specifier = ">=3.4.2" }, { name = "networkx", specifier = ">=3.4.2" },
{ name = "poethepoet", marker = "extra == 'dev'", specifier = ">=0.37.0" }, { name = "poethepoet", marker = "extra == 'dev'", specifier = ">=0.37.0" },
{ name = "polars", specifier = "==1.34.0" },
{ name = "pre-commit", marker = "extra == 'dev'", specifier = ">=4.3.0" }, { name = "pre-commit", marker = "extra == 'dev'", specifier = ">=4.3.0" },
{ name = "psycopg2-binary", specifier = ">=2.9.10" }, { name = "psycopg2-binary", specifier = ">=2.9.10" },
{ name = "python-dotenv", specifier = ">=1.1.0" }, { name = "python-dotenv", specifier = ">=1.1.0" },
@ -608,8 +625,8 @@ provides-extras = ["ms-login", "dev"]
[[package]] [[package]]
name = "envipy-additional-information" name = "envipy-additional-information"
version = "0.1.0" version = "0.1.7"
source = { git = "ssh://git@git.envipath.com/enviPath/enviPy-additional-information.git?rev=v0.1.4#4da604090bf7cf1f3f552d69485472dbc623030a" } source = { git = "ssh://git@git.envipath.com/enviPath/enviPy-additional-information.git?rev=v0.1.7#d02a5d5e6a931e6565ea86127813acf7e4b33a30" }
dependencies = [ dependencies = [
{ name = "pydantic" }, { name = "pydantic" },
] ]
@ -1074,6 +1091,47 @@ wheels = [
{ url = "https://files.pythonhosted.org/packages/b7/da/7d22601b625e241d4f23ef1ebff8acfc60da633c9e7e7922e24d10f592b3/multidict-6.7.0-py3-none-any.whl", hash = "sha256:394fc5c42a333c9ffc3e421a4c85e08580d990e08b99f6bf35b4132114c5dcb3", size = 12317, upload-time = "2025-10-06T14:52:29.272Z" }, { url = "https://files.pythonhosted.org/packages/b7/da/7d22601b625e241d4f23ef1ebff8acfc60da633c9e7e7922e24d10f592b3/multidict-6.7.0-py3-none-any.whl", hash = "sha256:394fc5c42a333c9ffc3e421a4c85e08580d990e08b99f6bf35b4132114c5dcb3", size = 12317, upload-time = "2025-10-06T14:52:29.272Z" },
] ]
[[package]]
name = "mypy"
version = "1.18.2"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "mypy-extensions" },
{ name = "pathspec" },
{ name = "typing-extensions" },
]
sdist = { url = "https://files.pythonhosted.org/packages/c0/77/8f0d0001ffad290cef2f7f216f96c814866248a0b92a722365ed54648e7e/mypy-1.18.2.tar.gz", hash = "sha256:06a398102a5f203d7477b2923dda3634c36727fa5c237d8f859ef90c42a9924b", size = 3448846, upload-time = "2025-09-19T00:11:10.519Z" }
wheels = [
{ url = "https://files.pythonhosted.org/packages/07/06/dfdd2bc60c66611dd8335f463818514733bc763e4760dee289dcc33df709/mypy-1.18.2-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:33eca32dd124b29400c31d7cf784e795b050ace0e1f91b8dc035672725617e34", size = 12908273, upload-time = "2025-09-19T00:10:58.321Z" },
{ url = "https://files.pythonhosted.org/packages/81/14/6a9de6d13a122d5608e1a04130724caf9170333ac5a924e10f670687d3eb/mypy-1.18.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:a3c47adf30d65e89b2dcd2fa32f3aeb5e94ca970d2c15fcb25e297871c8e4764", size = 11920910, upload-time = "2025-09-19T00:10:20.043Z" },
{ url = "https://files.pythonhosted.org/packages/5f/a9/b29de53e42f18e8cc547e38daa9dfa132ffdc64f7250e353f5c8cdd44bee/mypy-1.18.2-cp312-cp312-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:5d6c838e831a062f5f29d11c9057c6009f60cb294fea33a98422688181fe2893", size = 12465585, upload-time = "2025-09-19T00:10:33.005Z" },
{ url = "https://files.pythonhosted.org/packages/77/ae/6c3d2c7c61ff21f2bee938c917616c92ebf852f015fb55917fd6e2811db2/mypy-1.18.2-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:01199871b6110a2ce984bde85acd481232d17413868c9807e95c1b0739a58914", size = 13348562, upload-time = "2025-09-19T00:10:11.51Z" },
{ url = "https://files.pythonhosted.org/packages/4d/31/aec68ab3b4aebdf8f36d191b0685d99faa899ab990753ca0fee60fb99511/mypy-1.18.2-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:a2afc0fa0b0e91b4599ddfe0f91e2c26c2b5a5ab263737e998d6817874c5f7c8", size = 13533296, upload-time = "2025-09-19T00:10:06.568Z" },
{ url = "https://files.pythonhosted.org/packages/9f/83/abcb3ad9478fca3ebeb6a5358bb0b22c95ea42b43b7789c7fb1297ca44f4/mypy-1.18.2-cp312-cp312-win_amd64.whl", hash = "sha256:d8068d0afe682c7c4897c0f7ce84ea77f6de953262b12d07038f4d296d547074", size = 9828828, upload-time = "2025-09-19T00:10:28.203Z" },
{ url = "https://files.pythonhosted.org/packages/5f/04/7f462e6fbba87a72bc8097b93f6842499c428a6ff0c81dd46948d175afe8/mypy-1.18.2-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:07b8b0f580ca6d289e69209ec9d3911b4a26e5abfde32228a288eb79df129fcc", size = 12898728, upload-time = "2025-09-19T00:10:01.33Z" },
{ url = "https://files.pythonhosted.org/packages/99/5b/61ed4efb64f1871b41fd0b82d29a64640f3516078f6c7905b68ab1ad8b13/mypy-1.18.2-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:ed4482847168439651d3feee5833ccedbf6657e964572706a2adb1f7fa4dfe2e", size = 11910758, upload-time = "2025-09-19T00:10:42.607Z" },
{ url = "https://files.pythonhosted.org/packages/3c/46/d297d4b683cc89a6e4108c4250a6a6b717f5fa96e1a30a7944a6da44da35/mypy-1.18.2-cp313-cp313-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:c3ad2afadd1e9fea5cf99a45a822346971ede8685cc581ed9cd4d42eaf940986", size = 12475342, upload-time = "2025-09-19T00:11:00.371Z" },
{ url = "https://files.pythonhosted.org/packages/83/45/4798f4d00df13eae3bfdf726c9244bcb495ab5bd588c0eed93a2f2dd67f3/mypy-1.18.2-cp313-cp313-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:a431a6f1ef14cf8c144c6b14793a23ec4eae3db28277c358136e79d7d062f62d", size = 13338709, upload-time = "2025-09-19T00:11:03.358Z" },
{ url = "https://files.pythonhosted.org/packages/d7/09/479f7358d9625172521a87a9271ddd2441e1dab16a09708f056e97007207/mypy-1.18.2-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:7ab28cc197f1dd77a67e1c6f35cd1f8e8b73ed2217e4fc005f9e6a504e46e7ba", size = 13529806, upload-time = "2025-09-19T00:10:26.073Z" },
{ url = "https://files.pythonhosted.org/packages/71/cf/ac0f2c7e9d0ea3c75cd99dff7aec1c9df4a1376537cb90e4c882267ee7e9/mypy-1.18.2-cp313-cp313-win_amd64.whl", hash = "sha256:0e2785a84b34a72ba55fb5daf079a1003a34c05b22238da94fcae2bbe46f3544", size = 9833262, upload-time = "2025-09-19T00:10:40.035Z" },
{ url = "https://files.pythonhosted.org/packages/5a/0c/7d5300883da16f0063ae53996358758b2a2df2a09c72a5061fa79a1f5006/mypy-1.18.2-cp314-cp314-macosx_10_13_x86_64.whl", hash = "sha256:62f0e1e988ad41c2a110edde6c398383a889d95b36b3e60bcf155f5164c4fdce", size = 12893775, upload-time = "2025-09-19T00:10:03.814Z" },
{ url = "https://files.pythonhosted.org/packages/50/df/2cffbf25737bdb236f60c973edf62e3e7b4ee1c25b6878629e88e2cde967/mypy-1.18.2-cp314-cp314-macosx_11_0_arm64.whl", hash = "sha256:8795a039bab805ff0c1dfdb8cd3344642c2b99b8e439d057aba30850b8d3423d", size = 11936852, upload-time = "2025-09-19T00:10:51.631Z" },
{ url = "https://files.pythonhosted.org/packages/be/50/34059de13dd269227fb4a03be1faee6e2a4b04a2051c82ac0a0b5a773c9a/mypy-1.18.2-cp314-cp314-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:6ca1e64b24a700ab5ce10133f7ccd956a04715463d30498e64ea8715236f9c9c", size = 12480242, upload-time = "2025-09-19T00:11:07.955Z" },
{ url = "https://files.pythonhosted.org/packages/5b/11/040983fad5132d85914c874a2836252bbc57832065548885b5bb5b0d4359/mypy-1.18.2-cp314-cp314-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:d924eef3795cc89fecf6bedc6ed32b33ac13e8321344f6ddbf8ee89f706c05cb", size = 13326683, upload-time = "2025-09-19T00:09:55.572Z" },
{ url = "https://files.pythonhosted.org/packages/e9/ba/89b2901dd77414dd7a8c8729985832a5735053be15b744c18e4586e506ef/mypy-1.18.2-cp314-cp314-musllinux_1_2_x86_64.whl", hash = "sha256:20c02215a080e3a2be3aa50506c67242df1c151eaba0dcbc1e4e557922a26075", size = 13514749, upload-time = "2025-09-19T00:10:44.827Z" },
{ url = "https://files.pythonhosted.org/packages/25/bc/cc98767cffd6b2928ba680f3e5bc969c4152bf7c2d83f92f5a504b92b0eb/mypy-1.18.2-cp314-cp314-win_amd64.whl", hash = "sha256:749b5f83198f1ca64345603118a6f01a4e99ad4bf9d103ddc5a3200cc4614adf", size = 9982959, upload-time = "2025-09-19T00:10:37.344Z" },
{ url = "https://files.pythonhosted.org/packages/87/e3/be76d87158ebafa0309946c4a73831974d4d6ab4f4ef40c3b53a385a66fd/mypy-1.18.2-py3-none-any.whl", hash = "sha256:22a1748707dd62b58d2ae53562ffc4d7f8bcc727e8ac7cbc69c053ddc874d47e", size = 2352367, upload-time = "2025-09-19T00:10:15.489Z" },
]
[[package]]
name = "mypy-extensions"
version = "1.1.0"
source = { registry = "https://pypi.org/simple" }
sdist = { url = "https://files.pythonhosted.org/packages/a2/6e/371856a3fb9d31ca8dac321cda606860fa4548858c0cc45d9d1d4ca2628b/mypy_extensions-1.1.0.tar.gz", hash = "sha256:52e68efc3284861e772bbcd66823fde5ae21fd2fdb51c62a211403730b916558", size = 6343, upload-time = "2025-04-22T14:54:24.164Z" }
wheels = [
{ url = "https://files.pythonhosted.org/packages/79/7b/2c79738432f5c924bef5071f933bcc9efd0473bac3b4aa584a6f7c1c8df8/mypy_extensions-1.1.0-py3-none-any.whl", hash = "sha256:1be4cccdb0f2482337c4743e60421de3a356cd97508abadd57d47403e94f5505", size = 4963, upload-time = "2025-04-22T14:54:22.983Z" },
]
[[package]] [[package]]
name = "networkx" name = "networkx"
version = "3.5" version = "3.5"
@ -1308,6 +1366,15 @@ wheels = [
{ url = "https://files.pythonhosted.org/packages/aa/18/a8444036c6dd65ba3624c63b734d3ba95ba63ace513078e1580590075d21/pastel-0.2.1-py2.py3-none-any.whl", hash = "sha256:4349225fcdf6c2bb34d483e523475de5bb04a5c10ef711263452cb37d7dd4364", size = 5955, upload-time = "2020-09-16T19:21:11.409Z" }, { url = "https://files.pythonhosted.org/packages/aa/18/a8444036c6dd65ba3624c63b734d3ba95ba63ace513078e1580590075d21/pastel-0.2.1-py2.py3-none-any.whl", hash = "sha256:4349225fcdf6c2bb34d483e523475de5bb04a5c10ef711263452cb37d7dd4364", size = 5955, upload-time = "2020-09-16T19:21:11.409Z" },
] ]
[[package]]
name = "pathspec"
version = "0.12.1"
source = { registry = "https://pypi.org/simple" }
sdist = { url = "https://files.pythonhosted.org/packages/ca/bc/f35b8446f4531a7cb215605d100cd88b7ac6f44ab3fc94870c120ab3adbf/pathspec-0.12.1.tar.gz", hash = "sha256:a482d51503a1ab33b1c67a6c3813a26953dbdc71c31dacaef9a838c4e29f5712", size = 51043, upload-time = "2023-12-10T22:30:45Z" }
wheels = [
{ url = "https://files.pythonhosted.org/packages/cc/20/ff623b09d963f88bfde16306a54e12ee5ea43e9b597108672ff3a408aad6/pathspec-0.12.1-py3-none-any.whl", hash = "sha256:a0d503e138a4c123b27490a4f7beda6a01c6f288df0e4a8b79c7eb0dc7b4cc08", size = 31191, upload-time = "2023-12-10T22:30:43.14Z" },
]
[[package]] [[package]]
name = "pillow" name = "pillow"
version = "11.3.0" version = "11.3.0"
@ -1396,6 +1463,32 @@ wheels = [
{ url = "https://files.pythonhosted.org/packages/92/1b/5337af1a6a478d25a3e3c56b9b4b42b0a160314e02f4a0498d5322c8dac4/poethepoet-0.37.0-py3-none-any.whl", hash = "sha256:861790276315abcc8df1b4bd60e28c3d48a06db273edd3092f3c94e1a46e5e22", size = 90062, upload-time = "2025-08-11T18:00:27.595Z" }, { url = "https://files.pythonhosted.org/packages/92/1b/5337af1a6a478d25a3e3c56b9b4b42b0a160314e02f4a0498d5322c8dac4/poethepoet-0.37.0-py3-none-any.whl", hash = "sha256:861790276315abcc8df1b4bd60e28c3d48a06db273edd3092f3c94e1a46e5e22", size = 90062, upload-time = "2025-08-11T18:00:27.595Z" },
] ]
[[package]]
name = "polars"
version = "1.34.0"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "polars-runtime-32" },
]
sdist = { url = "https://files.pythonhosted.org/packages/a1/3e/35fcf5bf51404371bb172b289a5065778dc97adca4416e199c294125eb05/polars-1.34.0.tar.gz", hash = "sha256:5de5f871027db4b11bcf39215a2d6b13b4a80baf8a55c5862d4ebedfd5cd4013", size = 684309, upload-time = "2025-10-02T18:31:04.396Z" }
wheels = [
{ url = "https://files.pythonhosted.org/packages/6b/80/1791ac226bb989bef30fe8fde752b2021b6ec5dfd6e880262596aedf4c05/polars-1.34.0-py3-none-any.whl", hash = "sha256:40d2f357b4d9e447ad28bd2c9923e4318791a7c18eb68f31f1fbf11180f41391", size = 772686, upload-time = "2025-10-02T18:29:59.492Z" },
]
[[package]]
name = "polars-runtime-32"
version = "1.34.0"
source = { registry = "https://pypi.org/simple" }
sdist = { url = "https://files.pythonhosted.org/packages/02/10/1189afb14cc47ed215ccf7fbd00ed21c48edfd89e51c16f8628a33ae4b1b/polars_runtime_32-1.34.0.tar.gz", hash = "sha256:ebe6f865128a0d833f53a3f6828360761ad86d1698bceb22bef9fd999500dc1c", size = 2634491, upload-time = "2025-10-02T18:31:05.502Z" }
wheels = [
{ url = "https://files.pythonhosted.org/packages/97/35/bc4f1a9dcef61845e8e4e5d2318470b002b93a3564026f0643f562761ecb/polars_runtime_32-1.34.0-cp39-abi3-macosx_10_12_x86_64.whl", hash = "sha256:2878f9951e91121afe60c25433ef270b9a221e6ebf3de5f6642346b38cab3f03", size = 39655423, upload-time = "2025-10-02T18:30:02.846Z" },
{ url = "https://files.pythonhosted.org/packages/a6/bb/d655a103e75b7c81c47a3c2d276be0200c0c15cfb6fd47f17932ddcf7519/polars_runtime_32-1.34.0-cp39-abi3-macosx_11_0_arm64.whl", hash = "sha256:fbc329c7d34a924228cc5dcdbbd4696d94411a3a5b15ad8bb868634c204e1951", size = 35986049, upload-time = "2025-10-02T18:30:05.848Z" },
{ url = "https://files.pythonhosted.org/packages/9e/ce/11ca850b7862cb43605e5d86cdf655614376e0a059871cf8305af5406554/polars_runtime_32-1.34.0-cp39-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:93fa51d88a2d12ea996a5747aad5647d22a86cce73c80f208e61f487b10bc448", size = 40261269, upload-time = "2025-10-02T18:30:08.48Z" },
{ url = "https://files.pythonhosted.org/packages/d8/25/77d12018c35489e19f7650b40679714a834effafc25d61e8dcee7c4fafce/polars_runtime_32-1.34.0-cp39-abi3-manylinux_2_24_aarch64.whl", hash = "sha256:79e4d696392c6d8d51f4347f0b167c52eef303c9d87093c0c68e8651198735b7", size = 37049077, upload-time = "2025-10-02T18:30:11.162Z" },
{ url = "https://files.pythonhosted.org/packages/e2/75/c30049d45ea1365151f86f650ed5354124ff3209f0abe588664c8eb13a31/polars_runtime_32-1.34.0-cp39-abi3-win_amd64.whl", hash = "sha256:2501d6b29d9001ea5ea2fd9b598787e10ddf45d8c4a87c2bead75159e8a15711", size = 40105782, upload-time = "2025-10-02T18:30:14.597Z" },
{ url = "https://files.pythonhosted.org/packages/a3/31/84efa27aa3478c8670bac1a720c8b1aee5c58c9c657c980e5e5c47fde883/polars_runtime_32-1.34.0-cp39-abi3-win_arm64.whl", hash = "sha256:f9ed1765378dfe0bcd1ac5ec570dd9eab27ea728bbc980cc9a76eebc55586559", size = 35873216, upload-time = "2025-10-02T18:30:17.439Z" },
]
[[package]] [[package]]
name = "pre-commit" name = "pre-commit"
version = "4.3.0" version = "4.3.0"
@ -1754,11 +1847,11 @@ wheels = [
[[package]] [[package]]
name = "redis" name = "redis"
version = "6.4.0" version = "7.0.1"
source = { registry = "https://pypi.org/simple" } source = { registry = "https://pypi.org/simple" }
sdist = { url = "https://files.pythonhosted.org/packages/0d/d6/e8b92798a5bd67d659d51a18170e91c16ac3b59738d91894651ee255ed49/redis-6.4.0.tar.gz", hash = "sha256:b01bc7282b8444e28ec36b261df5375183bb47a07eb9c603f284e89cbc5ef010", size = 4647399, upload-time = "2025-08-07T08:10:11.441Z" } sdist = { url = "https://files.pythonhosted.org/packages/57/8f/f125feec0b958e8d22c8f0b492b30b1991d9499a4315dfde466cf4289edc/redis-7.0.1.tar.gz", hash = "sha256:c949df947dca995dc68fdf5a7863950bf6df24f8d6022394585acc98e81624f1", size = 4755322, upload-time = "2025-10-27T14:34:00.33Z" }
wheels = [ wheels = [
{ url = "https://files.pythonhosted.org/packages/e8/02/89e2ed7e85db6c93dfa9e8f691c5087df4e3551ab39081a4d7c6d1f90e05/redis-6.4.0-py3-none-any.whl", hash = "sha256:f0544fa9604264e9464cdf4814e7d4830f74b165d52f2a330a760a88dd248b7f", size = 279847, upload-time = "2025-08-07T08:10:09.84Z" }, { url = "https://files.pythonhosted.org/packages/e9/97/9f22a33c475cda519f20aba6babb340fb2f2254a02fb947816960d1e669a/redis-7.0.1-py3-none-any.whl", hash = "sha256:4977af3c7d67f8f0eb8b6fec0dafc9605db9343142f634041fb0235f67c0588a", size = 339938, upload-time = "2025-10-27T14:33:58.553Z" },
] ]
[[package]] [[package]]