17 Commits

Author SHA1 Message Date
35c342a3e3 Fixed handling for SMIRKS/SMARTS, adjusted test values as they are now cleaned, refactored logic for object update 2025-11-11 10:09:22 +01:00
db9036ce72 Merge branch 'develop' into fix/xss 2025-11-11 21:07:54 +13:00
1cccefa991 [Feature] Basic Test Workflow (#186)
Co-authored-by: Tim Lorsbach <tim@lorsba.ch>
Reviewed-on: enviPath/enviPy#186
Reviewed-by: liambrydon <lbry121@aucklanduni.ac.nz>
Reviewed-by: Tobias O <tobias.olenyi@envipath.com>
2025-11-11 21:07:25 +13:00
01a20e438d readd templatetags.py 2025-11-07 09:52:18 +13:00
654707e6b5 removed envipytags.py and moved name cleaning to before default name assignment 2025-11-07 09:42:21 +13:00
c88b0ff3e7 pyproject merge and uv merge 2025-11-07 08:49:56 +13:00
4246460f91 Merge remote-tracking branch 'origin/develop' into fix/xss
# Conflicts:
#	pyproject.toml
#	uv.lock
2025-11-07 08:49:10 +13:00
e26d5a21e3 [Enhancement] Refactor Dataset (#184)
# Summary
I have introduced a new base `class Dataset` in `ml.py` which all datasets should subclass. It stores the dataset as a polars DataFrame with the column names and number of columns determined by the subclass. It implements generic methods such as `add_row`, `at`, `limit` and dataset saving. It also details abstract methods required by the subclasses. These include `X`, `y` and `generate_dataset`.

There are two subclasses that currently exist. `RuleBasedDataset` for the MLRR models and `EnviFormerDataset` for the enviFormer models.

# Old Dataset to New RuleBasedDataset Functionality Translation

- [x] \_\_init\_\_
    - self.columns and self.num_labels moved to base Dataset class
    - self.data moved to base class with name self.df along with initialising from list or from another DataFrame
    - struct_features, triggered and observed remain the same
- [x] \_block\_indices
    - function moved to base Dataset class
- [x] structure_id
    - stays in RuleBasedDataset, now requires an index for the row of interest
- [x] add_row
    - moved to base Dataset class, now calls add_rows so one or more rows can be added at a time
- [x] times_triggered
    - stays in RuleBasedDataset, now does a look up using polars df.filter
- [x] struct_features (see init)
- [x] triggered (see init)
- [x] observed (see init)
- [x] at
    - removed in favour of indexing with getitem
- [x] limit
    - removed in favour of indexing with getitem
- [x] classification_dataset
    - stays in RuleBasedDataset, largely the same just with new dataset construction using add_rows
- [x] generate_dataset
    - stays in RuleBasedDataset, largely the same just with new dataset construction using add_rows
- [x] X
    - moved to base Dataset as @abstract_method, RuleBasedDataset implementation functionally the same but uses polars
- [x] trig
    - stays in RuleBasedDataset, functionally the same but uses polars
- [x] y
    - moved to base Dataset as @abstract_method, RuleBasedDataset implementation functionally the same but uses polars
- [x] \_\_get_item\_\_
    - moved to base dataset, now passes item to the dataframe for polars to handle
- [x] to_arff
    - stays in RuleBasedDataset, functionally the same but uses polars
- [x] \_\_repr\_\_
    - moved to base dataset
- [x] \_\_iter\_\_
    - moved to base Dataset, now uses polars iter_rows

# Base Dataset class Features
The following functions are available in the base Dataset class

- init - Create the dataset from a list of columns and data in format list of list. Or can create a dataset from a polars Dataframe, this is essential for recreating itself during indexing. Can create an empty dataset by just passing column names.
- add_rows - Add rows to the Dataset, we check that the new data length is the same but it is presumed that the column order matches the existing dataframe
- add_row - Add one row, see add_rows
- block_indices - Returns the column indices that start with the given prefix
- columns - Property, returns dataframe.columns
- shape - Property, returns dataframe.shape
- X - Abstract method to be implemented by the subclasses, it should represent the input to a ML model
- y - Abstract method to be implemented by the subclasses, it should represent the target for a ML model
- generate_dataset - Abstract and static method to be implemented by the subclasses, should return an initialised subclass of Dataset
- iter - returns the iterable from dataframe.iter_rows()
- getitem - passes the item argument to the dataframe. If the result of indexing the dataframe is another dataframe, the new dataframe is  packaged into a new Dataset of the same subclass. If the result of indexing is something else (int, float, polar Series) return the result.
- save - Pickle and save the dataframe to the given path
- load - Static method to load the dataset from the given path
- to_numpy - returns the dataframe as a numpy array. Required for compatibility with training of the ECC model
- repr - return a representation of the dataset
- len - return the length of the dataframe
- iter_rows - Return dataframe.iterrows with arguments passed through. Mainly used to get the named iterable which returns rows of the dataframe as dict of column names: column values instead of tuple of column values.
- filter - pass to dataframe.filter and recreates self with the result
- select - pass to dataframe.select and recreates self with the result
- with_columns - pass to dataframe.with_columns and recreates self with the result
- sort - pass to dataframe.sort and recreates self with the result
- item - pass to dataframe.item
- fill_nan - fill the dataframe nan's with value
- height - Property, returns the height (number of rows) of the dataframe

- [x] App domain
- [x] MACCS alternatives

Co-authored-by: Liam Brydon <62733830+MyCreativityOutlet@users.noreply.github.com>
Reviewed-on: enviPath/enviPy#184
Reviewed-by: jebus <lorsbach@envipath.com>
Co-authored-by: liambrydon <lbry121@aucklanduni.ac.nz>
Co-committed-by: liambrydon <lbry121@aucklanduni.ac.nz>
2025-11-07 08:46:17 +13:00
44b646e58a Merge remote-tracking branch 'origin/develop' into fix/xss
# Conflicts:
#	templates/modals/collections/new_model_modal.html
2025-11-07 08:34:33 +13:00
2194b097ae remove 'a' from allowed html tags 2025-11-06 10:33:22 +13:00
4524b8fdf3 moved cleaning to create where possible. Changed nh_safe to safe as we assume everything was cleaned in the first place 2025-11-06 09:46:30 +13:00
c663eaf7bd comment 2025-10-22 10:55:49 +13:00
ec0fc8cdc1 add error for username/email containing html. Removed checks for SMILES/SMARTS. Updated html to use the nh_safe template tag. #72 2025-10-22 10:47:35 +13:00
61346c4097 nh3 clean is now used on all free-text fields to ensure only approved html will be saved to the database. #72 2025-10-21 10:09:10 +13:00
43bce8a4e1 added nh_safe filter in envipytags.py and updated some of the existing 'safe' to 'nh_safe' 2025-10-21 09:10:28 +13:00
8d955d685c fixed XSS attack on pathway description and on scenario additional information fields. #72 2025-10-15 15:13:10 +13:00
17744294cc start towards #72. Added nh3 and fixed package description XSS attack 2025-10-15 12:24:36 +13:00
61 changed files with 1273 additions and 698 deletions

116
.gitea/workflows/ci.yaml Normal file
View File

@ -0,0 +1,116 @@
name: CI
on:
pull_request:
branches:
- develop
workflow_dispatch:
jobs:
test:
runs-on: ubuntu-latest
services:
postgres:
image: postgres:16
env:
POSTGRES_USER: ${{ vars.POSTGRES_USER }}
POSTGRES_PASSWORD: ${{ secrets.POSTGRES_PASSWORD }}
POSTGRES_DB: ${{ vars.POSTGRES_DB }}
ports:
- ${{ vars.POSTGRES_PORT}}:5432
options: >-
--health-cmd="pg_isready -U postgres"
--health-interval=10s
--health-timeout=5s
--health-retries=5
#redis:
# image: redis:7
# ports:
# - 6379:6379
# options: >-
# --health-cmd "redis-cli ping"
# --health-interval=10s
# --health-timeout=5s
# --health-retries=5
env:
RUNNER_TOOL_CACHE: /toolcache
EP_DATA_DIR: /opt/enviPy/
ALLOWED_HOSTS: 127.0.0.1,localhost
DEBUG: True
LOG_LEVEL: DEBUG
MODEL_BUILDING_ENABLED: True
APPLICABILITY_DOMAIN_ENABLED: True
ENVIFORMER_PRESENT: True
ENVIFORMER_DEVICE: cpu
FLAG_CELERY_PRESENT: False
PLUGINS_ENABLED: True
SERVER_URL: http://localhost:8000
ADMIN_APPROVAL_REQUIRED: True
REGISTRATION_MANDATORY: True
LOG_DIR: ''
# DB
POSTGRES_SERVICE_NAME: postgres
POSTGRES_DB: ${{ vars.POSTGRES_DB }}
POSTGRES_USER: ${{ vars.POSTGRES_USER }}
POSTGRES_PASSWORD: ${{ secrets.POSTGRES_PASSWORD }}
POSTGRES_PORT: 5432
# SENTRY
SENTRY_ENABLED: False
# MS ENTRA
MS_ENTRA_ENABLED: False
steps:
- name: Checkout repository
uses: actions/checkout@v4
- name: Install system tools via apt
run: |
sudo apt-get update
sudo apt-get install -y postgresql-client redis-tools openjdk-11-jre-headless
- name: Setup ssh
run: |
echo "${{ secrets.ENVIPY_CI_PRIVATE_KEY }}" > ~/.ssh/id_ed25519
chmod 600 ~/.ssh/id_ed25519
ssh-keyscan git.envipath.com >> ~/.ssh/known_hosts
eval $(ssh-agent -s)
ssh-add ~/.ssh/id_ed25519
- name: Install pnpm
uses: pnpm/action-setup@v4
with:
version: 10
- name: Use Node.js
uses: actions/setup-node@v4
with:
node-version: 20
cache: "pnpm"
- name: Install uv
uses: astral-sh/setup-uv@v6
with:
enable-cache: true
- name: Setup venv
run: |
uv sync --locked --all-extras --dev
- name: Wait for services
run: |
until pg_isready -h postgres -U postgres; do sleep 2; done
# until redis-cli -h redis ping; do sleep 2; done
- name: Run Django migrations
run: |
source .venv/bin/activate
python manage.py migrate --noinput
- name: Run Django tests
run: |
source .venv/bin/activate
python manage.py test tests --exclude-tag slow

View File

@ -92,6 +92,8 @@ TEMPLATES = [
},
]
ALLOWED_HTML_TAGS = {'b', 'i', 'u', 'br', 'em', 'mark', 'p', 's', 'strong'}
WSGI_APPLICATION = "envipath.wsgi.application"
# Database

View File

@ -4,6 +4,7 @@ import json
from typing import Union, List, Optional, Set, Dict, Any
from uuid import UUID
import nh3
from django.contrib.auth import get_user_model
from django.db import transaction
from django.conf import settings as s
@ -185,6 +186,12 @@ class UserManager(object):
def create_user(
username, email, password, set_setting=True, add_to_group=True, *args, **kwargs
):
# Clean for potential XSS
clean_username = nh3.clean(username).strip()
clean_email = nh3.clean(email).strip()
if clean_username != username or clean_email != email:
# This will be caught by the try in view.py/register
raise ValueError("Invalid username or password")
# avoid circular import :S
from .tasks import send_registration_mail
@ -262,8 +269,9 @@ class GroupManager(object):
@staticmethod
def create_group(current_user, name, description):
g = Group()
g.name = name
g.description = description
# Clean for potential XSS
g.name = nh3.clean(name, tags=s.ALLOWED_HTML_TAGS).strip()
g.description = nh3.clean(description, tags=s.ALLOWED_HTML_TAGS).strip()
g.owner = current_user
g.save()
@ -518,8 +526,13 @@ class PackageManager(object):
@transaction.atomic
def create_package(current_user, name: str, description: str = None):
p = Package()
p.name = name
p.description = description
# Clean for potential XSS
p.name = nh3.clean(name, tags=s.ALLOWED_HTML_TAGS).strip()
if description is not None and description.strip() != "":
p.description = nh3.clean(description.strip(), tags=s.ALLOWED_HTML_TAGS).strip()
p.save()
up = UserPackagePermission()
@ -1094,28 +1107,29 @@ class SettingManager(object):
model: EPModel = None,
model_threshold: float = None,
):
s = Setting()
s.name = name
s.description = description
s.max_nodes = max_nodes
s.max_depth = max_depth
s.model = model
s.model_threshold = model_threshold
new_s = Setting()
# Clean for potential XSS
new_s.name = nh3.clean(name, tags=s.ALLOWED_HTML_TAGS).strip()
new_s.description = nh3.clean(description, tags=s.ALLOWED_HTML_TAGS).strip()
new_s.max_nodes = max_nodes
new_s.max_depth = max_depth
new_s.model = model
new_s.model_threshold = model_threshold
s.save()
new_s.save()
if rule_packages is not None:
for r in rule_packages:
s.rule_packages.add(r)
s.save()
new_s.rule_packages.add(r)
new_s.save()
usp = UserSettingPermission()
usp.user = user
usp.setting = s
usp.setting = new_s
usp.permission = Permission.ALL[0]
usp.save()
return s
return new_s
@staticmethod
def get_default_setting(user: User):
@ -1544,7 +1558,7 @@ class SPathway(object):
if self.prediction_setting.model.app_domain:
app_domain_assessment = self.prediction_setting.model.app_domain.assess(
sub.smiles
)[0]
)
if self.persist is not None:
n = self.snode_persist_lookup[sub]
@ -1577,9 +1591,7 @@ class SPathway(object):
if self.prediction_setting.model:
if self.prediction_setting.model.app_domain:
app_domain_assessment = (
self.prediction_setting.model.app_domain.assess(c)[
0
]
self.prediction_setting.model.app_domain.assess(c)
)
self.smiles_to_node[c] = SNode(

View File

@ -11,6 +11,7 @@ from typing import Union, List, Optional, Dict, Tuple, Set, Any
from uuid import uuid4
import math
import joblib
import nh3
import numpy as np
from django.conf import settings as s
from django.contrib.auth.models import AbstractUser
@ -28,7 +29,14 @@ from sklearn.metrics import precision_score, recall_score, jaccard_score
from sklearn.model_selection import ShuffleSplit
from utilities.chem import FormatConverter, ProductSet, PredictionResult, IndigoUtils
from utilities.ml import Dataset, ApplicabilityDomainPCA, EnsembleClassifierChain, RelativeReasoning
from utilities.ml import (
RuleBasedDataset,
ApplicabilityDomainPCA,
EnsembleClassifierChain,
RelativeReasoning,
EnviFormerDataset,
Dataset,
)
logger = logging.getLogger(__name__)
@ -802,14 +810,16 @@ class Compound(EnviPathModel, AliasMixin, ScenarioMixin, ChemicalIdentifierMixin
c = Compound()
c.package = package
if name is None or name.strip() == "":
if name is not None:
# Clean for potential XSS
name = nh3.clean(name, tags=s.ALLOWED_HTML_TAGS).strip()
if name is None or name == "":
name = f"Compound {Compound.objects.filter(package=package).count() + 1}"
c.name = name
# We have a default here only set the value if it carries some payload
if description is not None and description.strip() != "":
c.description = description.strip()
c.description = nh3.clean(description, tags=s.ALLOWED_HTML_TAGS).strip()
c.save()
@ -981,11 +991,11 @@ class CompoundStructure(EnviPathModel, AliasMixin, ScenarioMixin, ChemicalIdenti
raise ValueError("Unpersisted Compound! Persist compound first!")
cs = CompoundStructure()
# Clean for potential XSS
if name is not None:
cs.name = name
cs.name = nh3.clean(name, tags=s.ALLOWED_HTML_TAGS).strip()
if description is not None:
cs.description = description
cs.description = nh3.clean(description, tags=s.ALLOWED_HTML_TAGS).strip()
cs.smiles = smiles
cs.compound = compound
@ -1187,21 +1197,29 @@ class SimpleAmbitRule(SimpleRule):
r = SimpleAmbitRule()
r.package = package
if name is None or name.strip() == "":
if name is not None:
name = nh3.clean(name, tags=s.ALLOWED_HTML_TAGS).strip()
if name is None or name == "":
name = f"Rule {Rule.objects.filter(package=package).count() + 1}"
r.name = name
if description is not None and description.strip() != "":
r.description = description
r.description = nh3.clean(description, tags=s.ALLOWED_HTML_TAGS).strip()
r.smirks = smirks
if reactant_filter_smarts is not None and reactant_filter_smarts.strip() != "":
r.reactant_filter_smarts = reactant_filter_smarts
if not FormatConverter.is_valid_smarts(reactant_filter_smarts.strip()):
raise ValueError(f'Reactant Filter SMARTS "{reactant_filter_smarts}" is invalid!')
else:
r.reactant_filter_smarts = reactant_filter_smarts.strip()
if product_filter_smarts is not None and product_filter_smarts.strip() != "":
r.product_filter_smarts = product_filter_smarts
if not FormatConverter.is_valid_smarts(product_filter_smarts.strip()):
raise ValueError(f'Product Filter SMARTS "{product_filter_smarts}" is invalid!')
else:
r.product_filter_smarts = product_filter_smarts.strip()
r.save()
return r
@ -1402,12 +1420,11 @@ class Reaction(EnviPathModel, AliasMixin, ScenarioMixin, ReactionIdentifierMixin
r = Reaction()
r.package = package
# Clean for potential XSS
if name is not None and name.strip() != "":
r.name = name
r.name = nh3.clean(name, tags=s.ALLOWED_HTML_TAGS).strip()
if description is not None and name.strip() != "":
r.description = description
r.description = nh3.clean(description, tags=s.ALLOWED_HTML_TAGS).strip()
r.multi_step = multi_step
@ -1715,14 +1732,15 @@ class Pathway(EnviPathModel, AliasMixin, ScenarioMixin):
):
pw = Pathway()
pw.package = package
if name is None or name.strip() == "":
if name is not None:
# Clean for potential XSS
name = nh3.clean(name, tags=s.ALLOWED_HTML_TAGS).strip()
if name is None or name == "":
name = f"Pathway {Pathway.objects.filter(package=package).count() + 1}"
pw.name = name
if description is not None and description.strip() != "":
pw.description = description
pw.description = nh3.clean(description, tags=s.ALLOWED_HTML_TAGS).strip()
pw.save()
try:
@ -2017,11 +2035,16 @@ class Edge(EnviPathModel, AliasMixin, ScenarioMixin):
for node in end_nodes:
e.end_nodes.add(node)
if name is None:
# Clean for potential XSS
# Cleaning technically not needed as it is also done in Reaction.create, including it here for consistency
if name is not None:
name = nh3.clean(name, tags=s.ALLOWED_HTML_TAGS).strip()
if name is None or name == "":
name = f"Reaction {pathway.package.reactions.count() + 1}"
if description is None:
description = s.DEFAULT_VALUES["description"]
description = nh3.clean(description, tags=s.ALLOWED_HTML_TAGS).strip()
r = Reaction.create(
pathway.package,
@ -2175,7 +2198,7 @@ class PackageBasedModel(EPModel):
applicable_rules = self.applicable_rules
reactions = list(self._get_reactions())
ds = Dataset.generate_dataset(reactions, applicable_rules, educts_only=True)
ds = RuleBasedDataset.generate_dataset(reactions, applicable_rules, educts_only=True)
end = datetime.now()
logger.debug(f"build_dataset took {(end - start).total_seconds()} seconds")
@ -2184,7 +2207,7 @@ class PackageBasedModel(EPModel):
ds.save(f)
return ds
def load_dataset(self) -> "Dataset":
def load_dataset(self) -> "Dataset | RuleBasedDataset | EnviFormerDataset":
ds_path = os.path.join(s.MODEL_DIR, f"{self.uuid}_ds.pkl")
return Dataset.load(ds_path)
@ -2225,7 +2248,7 @@ class PackageBasedModel(EPModel):
self.model_status = self.BUILT_NOT_EVALUATED
self.save()
def evaluate_model(self, multigen: bool, eval_packages: List["Package"] = None):
def evaluate_model(self, multigen: bool, eval_packages: List["Package"] = None, **kwargs):
if self.model_status != self.BUILT_NOT_EVALUATED:
raise ValueError(f"Can't evaluate a model in state {self.model_status}!")
@ -2343,37 +2366,39 @@ class PackageBasedModel(EPModel):
eval_reactions = list(
Reaction.objects.filter(package__in=self.eval_packages.all()).distinct()
)
ds = Dataset.generate_dataset(eval_reactions, self.applicable_rules, educts_only=True)
ds = RuleBasedDataset.generate_dataset(
eval_reactions, self.applicable_rules, educts_only=True
)
if isinstance(self, RuleBasedRelativeReasoning):
X = np.array(ds.X(exclude_id_col=False, na_replacement=None))
y = np.array(ds.y(na_replacement=np.nan))
X = ds.X(exclude_id_col=False, na_replacement=None).to_numpy()
y = ds.y(na_replacement=np.nan).to_numpy()
else:
X = np.array(ds.X(na_replacement=np.nan))
y = np.array(ds.y(na_replacement=np.nan))
X = ds.X(na_replacement=np.nan).to_numpy()
y = ds.y(na_replacement=np.nan).to_numpy()
single_gen_result = evaluate_sg(self.model, X, y, np.arange(len(X)), self.threshold)
self.eval_results = self.compute_averages([single_gen_result])
else:
ds = self.load_dataset()
if isinstance(self, RuleBasedRelativeReasoning):
X = np.array(ds.X(exclude_id_col=False, na_replacement=None))
y = np.array(ds.y(na_replacement=np.nan))
X = ds.X(exclude_id_col=False, na_replacement=None).to_numpy()
y = ds.y(na_replacement=np.nan).to_numpy()
else:
X = np.array(ds.X(na_replacement=np.nan))
y = np.array(ds.y(na_replacement=np.nan))
X = ds.X(na_replacement=np.nan).to_numpy()
y = ds.y(na_replacement=np.nan).to_numpy()
n_splits = 20
n_splits = kwargs.get("n_splits", 20)
shuff = ShuffleSplit(n_splits=n_splits, test_size=0.25, random_state=42)
splits = list(shuff.split(X))
from joblib import Parallel, delayed
models = Parallel(n_jobs=10)(
models = Parallel(n_jobs=min(10, len(splits)))(
delayed(train_func)(X, y, train_index, self._model_args())
for train_index, _ in splits
)
evaluations = Parallel(n_jobs=10)(
evaluations = Parallel(n_jobs=min(10, len(splits)))(
delayed(evaluate_sg)(model, X, y, test_index, self.threshold)
for model, (_, test_index) in zip(models, splits)
)
@ -2541,14 +2566,15 @@ class RuleBasedRelativeReasoning(PackageBasedModel):
):
rbrr = RuleBasedRelativeReasoning()
rbrr.package = package
if name is None or name.strip() == "":
if name is not None:
# Clean for potential XSS
name = nh3.clean(name, tags=s.ALLOWED_HTML_TAGS).strip()
if name is None or name == "":
name = f"RuleBasedRelativeReasoning {RuleBasedRelativeReasoning.objects.filter(package=package).count() + 1}"
rbrr.name = name
if description is not None and description.strip() != "":
rbrr.description = description
rbrr.description = nh3.clean(description, tags=s.ALLOWED_HTML_TAGS).strip()
if threshold is None or (threshold <= 0 or 1 <= threshold):
raise ValueError("Threshold must be a float between 0 and 1.")
@ -2585,11 +2611,11 @@ class RuleBasedRelativeReasoning(PackageBasedModel):
return rbrr
def _fit_model(self, ds: Dataset):
def _fit_model(self, ds: RuleBasedDataset):
X, y = ds.X(exclude_id_col=False, na_replacement=None), ds.y(na_replacement=None)
model = RelativeReasoning(
start_index=ds.triggered()[0],
end_index=ds.triggered()[1],
end_index=ds.triggered()[-1],
)
model.fit(X, y)
return model
@ -2599,7 +2625,7 @@ class RuleBasedRelativeReasoning(PackageBasedModel):
return {
"clz": "RuleBaseRelativeReasoning",
"start_index": ds.triggered()[0],
"end_index": ds.triggered()[1],
"end_index": ds.triggered()[-1],
}
def _save_model(self, model):
@ -2645,14 +2671,15 @@ class MLRelativeReasoning(PackageBasedModel):
):
mlrr = MLRelativeReasoning()
mlrr.package = package
if name is None or name.strip() == "":
if name is not None:
# Clean for potential XSS
name = nh3.clean(name, tags=s.ALLOWED_HTML_TAGS).strip()
if name is None or name == "":
name = f"MLRelativeReasoning {MLRelativeReasoning.objects.filter(package=package).count() + 1}"
mlrr.name = name
if description is not None and description.strip() != "":
mlrr.description = description
mlrr.description = nh3.clean(description, tags=s.ALLOWED_HTML_TAGS).strip()
if threshold is None or (threshold <= 0 or 1 <= threshold):
raise ValueError("Threshold must be a float between 0 and 1.")
@ -2687,11 +2714,11 @@ class MLRelativeReasoning(PackageBasedModel):
return mlrr
def _fit_model(self, ds: Dataset):
def _fit_model(self, ds: RuleBasedDataset):
X, y = ds.X(na_replacement=np.nan), ds.y(na_replacement=np.nan)
model = EnsembleClassifierChain(**s.DEFAULT_MODEL_PARAMS)
model.fit(X, y)
model.fit(X.to_numpy(), y.to_numpy())
return model
def _model_args(self):
@ -2714,7 +2741,7 @@ class MLRelativeReasoning(PackageBasedModel):
start = datetime.now()
ds = self.load_dataset()
classify_ds, classify_prods = ds.classification_dataset([smiles], self.applicable_rules)
pred = self.model.predict_proba(classify_ds.X())
pred = self.model.predict_proba(classify_ds.X().to_numpy())
res = MLRelativeReasoning.combine_products_and_probs(
self.applicable_rules, pred[0], classify_prods[0]
@ -2759,7 +2786,9 @@ class ApplicabilityDomain(EnviPathModel):
@cached_property
def training_set_probs(self):
return joblib.load(os.path.join(s.MODEL_DIR, f"{self.model.uuid}_train_probs.pkl"))
ds = self.model.load_dataset()
col_ids = ds.block_indices("prob")
return ds[:, col_ids]
def build(self):
ds = self.model.load_dataset()
@ -2767,9 +2796,9 @@ class ApplicabilityDomain(EnviPathModel):
start = datetime.now()
# Get Trainingset probs and dump them as they're required when using the app domain
probs = self.model.model.predict_proba(ds.X())
f = os.path.join(s.MODEL_DIR, f"{self.model.uuid}_train_probs.pkl")
joblib.dump(probs, f)
probs = self.model.model.predict_proba(ds.X().to_numpy())
ds.add_probs(probs)
ds.save(os.path.join(s.MODEL_DIR, f"{self.model.uuid}_ds.pkl"))
ad = ApplicabilityDomainPCA(num_neighbours=self.num_neighbours)
ad.build(ds)
@ -2792,15 +2821,20 @@ class ApplicabilityDomain(EnviPathModel):
joblib.dump(ad, f)
def assess(self, structure: Union[str, "CompoundStructure"]):
return self.assess_batch([structure])[0]
def assess_batch(self, structures: List["CompoundStructure | str"]):
ds = self.model.load_dataset()
if isinstance(structure, CompoundStructure):
smiles = structure.smiles
smiles = []
for struct in structures:
if isinstance(struct, CompoundStructure):
smiles.append(structures.smiles)
else:
smiles = structure
smiles.append(structures)
assessment_ds, assessment_prods = ds.classification_dataset(
[structure], self.model.applicable_rules
structures, self.model.applicable_rules
)
# qualified_neighbours_per_rule is a nested dictionary structured as:
@ -2814,82 +2848,61 @@ class ApplicabilityDomain(EnviPathModel):
# it identifies all training structures that have the same trigger reaction activated (i.e., value 1).
# This is used to find "qualified neighbours" — training examples that share the same triggered feature
# with a given assessment structure under a particular rule.
qualified_neighbours_per_rule: Dict[int, Dict[int, List[int]]] = defaultdict(
lambda: defaultdict(list)
)
qualified_neighbours_per_rule: Dict = {}
for rule_idx, feature_index in enumerate(range(*assessment_ds.triggered())):
feature = ds.columns[feature_index]
if feature.startswith("trig_"):
# TODO unroll loop
for i, cx in enumerate(assessment_ds.X(exclude_id_col=False)):
if int(cx[feature_index]) == 1:
for j, tx in enumerate(ds.X(exclude_id_col=False)):
if int(tx[feature_index]) == 1:
qualified_neighbours_per_rule[i][rule_idx].append(j)
import polars as pl
probs = self.training_set_probs
# preds = self.model.model.predict_proba(assessment_ds.X())
# Select only the triggered columns
for i, row in enumerate(assessment_ds[:, assessment_ds.triggered()].iter_rows(named=True)):
# Find the rules the structure triggers. For each rule, filter the training dataset to rows that also
# trigger that rule.
train_trig = {
trig_uuid.split("_")[-1]: ds.filter(pl.col(trig_uuid).eq(1))
for trig_uuid, value in row.items()
if value == 1
}
qualified_neighbours_per_rule[i] = train_trig
rule_to_i = {str(r.uuid): i for i, r in enumerate(self.model.applicable_rules)}
preds = self.model.combine_products_and_probs(
self.model.applicable_rules,
self.model.model.predict_proba(assessment_ds.X())[0],
self.model.model.predict_proba(assessment_ds.X().to_numpy())[0],
assessment_prods[0],
)
assessments = list()
# loop through our assessment dataset
for i, instance in enumerate(assessment_ds):
for i, instance in enumerate(assessment_ds[:, assessment_ds.struct_features()]):
rule_reliabilities = dict()
local_compatibilities = dict()
neighbours_per_rule = dict()
neighbor_probs_per_rule = dict()
# loop through rule indices together with the collected neighbours indices from train dataset
for rule_idx, vals in qualified_neighbours_per_rule[i].items():
# collect the train dataset instances and store it along with the index (a.k.a. row number) of the
# train dataset
train_instances = []
for v in vals:
train_instances.append((v, ds.at(v)))
# sf is a tuple with start/end index of the features
sf = ds.struct_features()
# compute tanimoto distance for all neighbours
# result ist a list of tuples with train index and computed distance
for rule_uuid, train_instances in qualified_neighbours_per_rule[i].items():
# compute tanimoto distance for all neighbours and add to dataset
dists = self._compute_distances(
instance.X()[0][sf[0] : sf[1]],
[ti[1].X()[0][sf[0] : sf[1]] for ti in train_instances],
assessment_ds[i, assessment_ds.struct_features()].to_numpy()[0],
train_instances[:, train_instances.struct_features()].to_numpy(),
)
dists_with_index = list()
for ti, dist in zip(train_instances, dists):
dists_with_index.append((ti[0], dist[1]))
train_instances = train_instances.with_columns(dist=pl.Series(dists))
# sort them in a descending way and take at most `self.num_neighbours`
dists_with_index = sorted(dists_with_index, key=lambda x: x[1], reverse=True)
dists_with_index = dists_with_index[: self.num_neighbours]
# TODO: Should this be descending? If we want the most similar then we want values close to zero (ascending)
train_instances = train_instances.sort("dist", descending=True)[
: self.num_neighbours
]
# compute average distance
rule_reliabilities[rule_idx] = (
sum([d[1] for d in dists_with_index]) / len(dists_with_index)
if len(dists_with_index) > 0
else 0.0
rule_reliabilities[rule_uuid] = (
train_instances.select(pl.mean("dist")).fill_nan(0.0).item()
)
# for local_compatibility we'll need the datasets for the indices having the highest similarity
neighbour_datasets = [(d[0], ds.at(d[0])) for d in dists_with_index]
local_compatibilities[rule_idx] = self._compute_compatibility(
rule_idx, probs, neighbour_datasets
local_compatibilities[rule_uuid] = self._compute_compatibility(
rule_uuid, train_instances
)
neighbours_per_rule[rule_idx] = [
CompoundStructure.objects.get(uuid=ds[1].structure_id())
for ds in neighbour_datasets
]
neighbor_probs_per_rule[rule_idx] = [
probs[d[0]][rule_idx] for d in dists_with_index
]
neighbours_per_rule[rule_uuid] = list(
CompoundStructure.objects.filter(uuid__in=train_instances["structure_id"])
)
neighbor_probs_per_rule[rule_uuid] = train_instances[f"prob_{rule_uuid}"].to_list()
ad_res = {
"ad_params": {
@ -2900,23 +2913,21 @@ class ApplicabilityDomain(EnviPathModel):
"local_compatibility_threshold": self.local_compatibilty_threshold,
},
"assessment": {
"smiles": smiles,
"inside_app_domain": self.pca.is_applicable(instance)[0],
"smiles": smiles[i],
"inside_app_domain": self.pca.is_applicable(assessment_ds[i])[0],
},
}
transformations = list()
for rule_idx in rule_reliabilities.keys():
rule = Rule.objects.get(
uuid=instance.columns[instance.observed()[0] + rule_idx].replace("obs_", "")
)
for rule_uuid in rule_reliabilities.keys():
rule = Rule.objects.get(uuid=rule_uuid)
rule_data = rule.simple_json()
rule_data["image"] = f"{rule.url}?image=svg"
neighbors = []
for n, n_prob in zip(
neighbours_per_rule[rule_idx], neighbor_probs_per_rule[rule_idx]
neighbours_per_rule[rule_uuid], neighbor_probs_per_rule[rule_uuid]
):
neighbor = n.simple_json()
neighbor["image"] = f"{n.url}?image=svg"
@ -2933,14 +2944,14 @@ class ApplicabilityDomain(EnviPathModel):
transformation = {
"rule": rule_data,
"reliability": rule_reliabilities[rule_idx],
"reliability": rule_reliabilities[rule_uuid],
# We're setting it here to False, as we don't know whether "assess" is called during pathway
# prediction or from Model Page. For persisted Nodes this field will be overwritten at runtime
"is_predicted": False,
"local_compatibility": local_compatibilities[rule_idx],
"probability": preds[rule_idx].probability,
"local_compatibility": local_compatibilities[rule_uuid],
"probability": preds[rule_to_i[rule_uuid]].probability,
"transformation_products": [
x.product_set for x in preds[rule_idx].product_sets
x.product_set for x in preds[rule_to_i[rule_uuid]].product_sets
],
"times_triggered": ds.times_triggered(str(rule.uuid)),
"neighbors": neighbors,
@ -2958,32 +2969,24 @@ class ApplicabilityDomain(EnviPathModel):
def _compute_distances(classify_instance: List[int], train_instances: List[List[int]]):
from utilities.ml import tanimoto_distance
distances = [
(i, tanimoto_distance(classify_instance, train))
for i, train in enumerate(train_instances)
]
distances = [tanimoto_distance(classify_instance, train) for train in train_instances]
return distances
@staticmethod
def _compute_compatibility(rule_idx: int, preds, neighbours: List[Tuple[int, "Dataset"]]):
tp, tn, fp, fn = 0.0, 0.0, 0.0, 0.0
def _compute_compatibility(self, rule_idx: int, neighbours: "RuleBasedDataset"):
accuracy = 0.0
import polars as pl
for n in neighbours:
obs = n[1].y()[0][rule_idx]
pred = preds[n[0]][rule_idx]
if obs and pred:
tp += 1
elif not obs and pred:
fp += 1
elif obs and not pred:
fn += 1
else:
tn += 1
# Jaccard Index
obs_pred = neighbours.select(
obs=pl.col(f"obs_{rule_idx}").cast(pl.Boolean),
pred=pl.col(f"prob_{rule_idx}") >= self.model.threshold,
)
# Compute tp, tn, fp, fn using polars expressions
tp = obs_pred.filter((pl.col("obs")) & (pl.col("pred"))).height
tn = obs_pred.filter((~pl.col("obs")) & (~pl.col("pred"))).height
fp = obs_pred.filter((~pl.col("obs")) & (pl.col("pred"))).height
fn = obs_pred.filter((pl.col("obs")) & (~pl.col("pred"))).height
if tp + tn > 0.0:
accuracy = (tp + tn) / (tp + tn + fp + fn)
return accuracy
@ -3003,14 +3006,15 @@ class EnviFormer(PackageBasedModel):
):
mod = EnviFormer()
mod.package = package
if name is None or name.strip() == "":
if name is not None:
# Clean for potential XSS
name = nh3.clean(name, tags=s.ALLOWED_HTML_TAGS).strip()
if name is None or name == "":
name = f"EnviFormer {EnviFormer.objects.filter(package=package).count() + 1}"
mod.name = name
if description is not None and description.strip() != "":
mod.description = description
mod.description = nh3.clean(description, tags=s.ALLOWED_HTML_TAGS).strip()
if threshold is None or (threshold <= 0 or 1 <= threshold):
raise ValueError("Threshold must be a float between 0 and 1.")
@ -3084,44 +3088,24 @@ class EnviFormer(PackageBasedModel):
self.save()
start = datetime.now()
# Standardise reactions for the training data, EnviFormer ignores stereochemistry currently
co2 = {"C(=O)=O", "O=C=O"}
ds = []
for reaction in self._get_reactions():
educts = ".".join(
[
FormatConverter.standardize(smile.smiles, remove_stereo=True)
for smile in reaction.educts.all()
]
)
products = ".".join(
[
FormatConverter.standardize(smile.smiles, remove_stereo=True)
for smile in reaction.products.all()
]
)
if products not in co2:
ds.append(f"{educts}>>{products}")
ds = EnviFormerDataset.generate_dataset(self._get_reactions())
end = datetime.now()
logger.debug(f"build_dataset took {(end - start).total_seconds()} seconds")
f = os.path.join(s.MODEL_DIR, f"{self.uuid}_ds.json")
with open(f, "w") as d_file:
json.dump(ds, d_file)
ds.save(f)
return ds
def load_dataset(self) -> "Dataset":
def load_dataset(self):
ds_path = os.path.join(s.MODEL_DIR, f"{self.uuid}_ds.json")
with open(ds_path) as d_file:
ds = json.load(d_file)
return ds
return EnviFormerDataset.load(ds_path)
def _fit_model(self, ds):
# Call to enviFormer's fine_tune function and return the model
from enviformer.finetune import fine_tune
start = datetime.now()
model = fine_tune(ds, s.MODEL_DIR, str(self.uuid), device=s.ENVIFORMER_DEVICE)
model = fine_tune(ds.X(), ds.y(), s.MODEL_DIR, str(self.uuid), device=s.ENVIFORMER_DEVICE)
end = datetime.now()
logger.debug(f"EnviFormer finetuning took {(end - start).total_seconds():.2f} seconds")
return model
@ -3137,7 +3121,7 @@ class EnviFormer(PackageBasedModel):
args = {"clz": "EnviFormer"}
return args
def evaluate_model(self, multigen: bool, eval_packages: List["Package"] = None):
def evaluate_model(self, multigen: bool, eval_packages: List["Package"] = None, **kwargs):
if self.model_status != self.BUILT_NOT_EVALUATED:
raise ValueError(f"Can't evaluate a model in state {self.model_status}!")
@ -3152,21 +3136,20 @@ class EnviFormer(PackageBasedModel):
self.model_status = self.EVALUATING
self.save()
def evaluate_sg(test_reactions, predictions, model_thresh):
def evaluate_sg(test_ds, predictions, model_thresh):
# Group the true products of reactions with the same reactant together
assert len(test_ds) == len(predictions)
true_dict = {}
for r in test_reactions:
reactant, true_product_set = r.split(">>")
for r in test_ds:
reactant, true_product_set = r
true_product_set = {p for p in true_product_set.split(".")}
true_dict[reactant] = true_dict.setdefault(reactant, []) + [true_product_set]
assert len(test_reactions) == len(predictions)
assert sum(len(v) for v in true_dict.values()) == len(test_reactions)
# Group the predicted products of reactions with the same reactant together
pred_dict = {}
for k, pred in enumerate(predictions):
pred_smiles, pred_proba = zip(*pred.items())
reactant, true_product = test_reactions[k].split(">>")
reactant, _ = test_ds[k, "educts"], test_ds[k, "products"]
pred_dict.setdefault(reactant, {"predict": [], "scores": []})
for smiles, proba in zip(pred_smiles, pred_proba):
smiles = set(smiles.split("."))
@ -3201,7 +3184,7 @@ class EnviFormer(PackageBasedModel):
break
# Recall is TP (correct) / TP + FN (len(test_reactions))
rec = {f"{k:.2f}": v / len(test_reactions) for k, v in correct.items()}
rec = {f"{k:.2f}": v / len(test_ds) for k, v in correct.items()}
# Precision is TP (correct) / TP + FP (predicted)
prec = {
f"{k:.2f}": v / predicted[k] if predicted[k] > 0 else 0 for k, v in correct.items()
@ -3280,47 +3263,35 @@ class EnviFormer(PackageBasedModel):
# If there are eval packages perform single generation evaluation on them instead of random splits
if self.eval_packages.count() > 0:
ds = []
for reaction in Reaction.objects.filter(
package__in=self.eval_packages.all()
).distinct():
educts = ".".join(
[
FormatConverter.standardize(smile.smiles, remove_stereo=True)
for smile in reaction.educts.all()
]
ds = EnviFormerDataset.generate_dataset(
Reaction.objects.filter(package__in=self.eval_packages.all()).distinct()
)
products = ".".join(
[
FormatConverter.standardize(smile.smiles, remove_stereo=True)
for smile in reaction.products.all()
]
)
ds.append(f"{educts}>>{products}")
test_result = self.model.predict_batch([smirk.split(">>")[0] for smirk in ds])
test_result = self.model.predict_batch(ds.X())
single_gen_result = evaluate_sg(ds, test_result, self.threshold)
self.eval_results = self.compute_averages([single_gen_result])
else:
from enviformer.finetune import fine_tune
ds = self.load_dataset()
n_splits = 20
n_splits = kwargs.get("n_splits", 20)
shuff = ShuffleSplit(n_splits=n_splits, test_size=0.1, random_state=42)
# Single gen eval is done in one loop of train then evaluate rather than storing all n_splits trained models
# this helps reduce the memory footprint.
single_gen_results = []
for split_id, (train_index, test_index) in enumerate(shuff.split(ds)):
train = [ds[i] for i in train_index]
test = [ds[i] for i in test_index]
train = ds[train_index]
test = ds[test_index]
start = datetime.now()
model = fine_tune(train, s.MODEL_DIR, str(split_id), device=s.ENVIFORMER_DEVICE)
model = fine_tune(
train.X(), train.y(), s.MODEL_DIR, str(split_id), device=s.ENVIFORMER_DEVICE
)
end = datetime.now()
logger.debug(
f"EnviFormer finetuning took {(end - start).total_seconds():.2f} seconds"
)
model.to(s.ENVIFORMER_DEVICE)
test_result = model.predict_batch([smirk.split(">>")[0] for smirk in test])
test_result = model.predict_batch(test.X())
single_gen_results.append(evaluate_sg(test, test_result, self.threshold))
self.eval_results = self.compute_averages(single_gen_results)
@ -3399,23 +3370,12 @@ class EnviFormer(PackageBasedModel):
):
overlap += 1
continue
educts = ".".join(
[
FormatConverter.standardize(smile.smiles, remove_stereo=True)
for smile in reaction.educts.all()
]
)
products = ".".join(
[
FormatConverter.standardize(smile.smiles, remove_stereo=True)
for smile in reaction.products.all()
]
)
train_reactions.append(f"{educts}>>{products}")
train_reactions.append(reaction)
train_ds = EnviFormerDataset.generate_dataset(train_reactions)
logging.debug(
f"{overlap} compounds had to be removed from multigen split due to overlap within pathways"
)
model = fine_tune(train_reactions, s.MODEL_DIR, f"mg_{split_id}")
model = fine_tune(train_ds.X(), train_ds.y(), s.MODEL_DIR, f"mg_{split_id}")
multi_gen_results.append(evaluate_mg(model, test_pathways, self.threshold))
self.eval_results.update(
@ -3464,41 +3424,44 @@ class Scenario(EnviPathModel):
scenario_type: str,
additional_information: List["EnviPyModel"],
):
s = Scenario()
s.package = package
if name is None or name.strip() == "":
new_s = Scenario()
new_s.package = package
if name is not None:
# Clean for potential XSS
name = nh3.clean(name, tags=s.ALLOWED_HTML_TAGS).strip()
if name is None or name == "":
name = f"Scenario {Scenario.objects.filter(package=package).count() + 1}"
s.name = name
new_s.name = name
if description is not None and description.strip() != "":
s.description = description
new_s.description = nh3.clean(description, tags=s.ALLOWED_HTML_TAGS).strip()
if scenario_date is not None and scenario_date.strip() != "":
s.scenario_date = scenario_date
new_s.scenario_date = nh3.clean(scenario_date).strip()
if scenario_type is not None and scenario_type.strip() != "":
s.scenario_type = scenario_type
new_s.scenario_type = scenario_type
add_inf = defaultdict(list)
for info in additional_information:
cls_name = info.__class__.__name__
ai_data = json.loads(info.model_dump_json())
# Clean for potential XSS hidden in the additional information fields.
ai_data = json.loads(nh3.clean(info.model_dump_json()).strip())
ai_data["uuid"] = f"{uuid4()}"
add_inf[cls_name].append(ai_data)
s.additional_information = add_inf
new_s.additional_information = add_inf
s.save()
new_s.save()
return s
return new_s
@transaction.atomic
def add_additional_information(self, data: "EnviPyModel"):
cls_name = data.__class__.__name__
ai_data = json.loads(data.model_dump_json())
# Clean for potential XSS hidden in the additional information fields.
ai_data = json.loads(nh3.clean(data.model_dump_json()).strip())
ai_data["uuid"] = f"{uuid4()}"
if cls_name not in self.additional_information:
@ -3533,7 +3496,8 @@ class Scenario(EnviPathModel):
new_ais = defaultdict(list)
for k, vals in data.items():
for v in vals:
ai_data = json.loads(v.model_dump_json())
# Clean for potential XSS hidden in the additional information fields.
ai_data = json.loads(nh3.clean(v.model_dump_json()).strip())
if hasattr(v, "uuid"):
ai_data["uuid"] = str(v.uuid)
else:

View File

@ -10,6 +10,7 @@ from django.urls import reverse
from django.views.decorators.csrf import csrf_exempt
from envipy_additional_information import NAME_MAPPING
from oauth2_provider.decorators import protected_resource
import nh3
from utilities.chem import FormatConverter, IndigoUtils
from utilities.decorators import package_permission_required
@ -85,7 +86,10 @@ def login(request):
from django.contrib.auth import authenticate
from django.contrib.auth import login
username = request.POST.get("username")
username = request.POST.get("username").strip()
if username != request.POST.get("username"):
context["message"] = "Login failed!"
return render(request, "static/login.html", context)
password = request.POST.get("password")
# Get email for username and check if the account is active
@ -670,7 +674,8 @@ def search(request):
if request.method == "GET":
package_urls = request.GET.getlist("packages")
searchterm = request.GET.get("search")
searchterm = request.GET.get("search").strip()
mode = request.GET.get("mode")
# add HTTP_ACCEPT check to differentiate between index and ajax call
@ -771,7 +776,6 @@ def package_models(request, package_uuid):
elif request.method == "POST":
log_post_params(request)
name = request.POST.get("model-name")
description = request.POST.get("model-description")
@ -892,7 +896,7 @@ def package_model(request, package_uuid, model_uuid):
return JsonResponse(res, safe=False)
else:
app_domain_assessment = current_model.app_domain.assess(stand_smiles)[0]
app_domain_assessment = current_model.app_domain.assess(stand_smiles)
return JsonResponse(app_domain_assessment, safe=False)
context = get_base_context(request)
@ -936,8 +940,14 @@ def package_model(request, package_uuid, model_uuid):
else:
return HttpResponseBadRequest()
else:
name = request.POST.get("model-name", "").strip()
description = request.POST.get("model-description", "").strip()
# TODO: Move cleaning to property updater
name = request.POST.get("model-name")
if name is not None:
name = nh3.clean(name, tags=s.ALLOWED_HTML_TAGS).strip()
description = request.POST.get("model-description")
if description is not None:
description = nh3.clean(description, tags=s.ALLOWED_HTML_TAGS).strip()
if any([name, description]):
if name:
@ -1039,8 +1049,16 @@ def package(request, package_uuid):
else:
return HttpResponseBadRequest()
# TODO: Move cleaning to property updater
new_package_name = request.POST.get("package-name")
if new_package_name is not None:
new_package_name = nh3.clean(new_package_name, tags=s.ALLOWED_HTML_TAGS).strip()
new_package_description = request.POST.get("package-description")
if new_package_description is not None:
new_package_description = nh3.clean(
new_package_description, tags=s.ALLOWED_HTML_TAGS
).strip()
grantee_url = request.POST.get("grantee")
read = request.POST.get("read") == "on"
@ -1149,7 +1167,7 @@ def package_compounds(request, package_uuid):
elif request.method == "POST":
compound_name = request.POST.get("compound-name")
compound_smiles = request.POST.get("compound-smiles")
compound_smiles = request.POST.get("compound-smiles").strip()
compound_description = request.POST.get("compound-description")
c = Compound.create(current_package, compound_smiles, compound_name, compound_description)
@ -1202,8 +1220,16 @@ def package_compound(request, package_uuid, compound_uuid):
return JsonResponse({"success": current_compound.url})
new_compound_name = request.POST.get("compound-name", "").strip()
new_compound_description = request.POST.get("compound-description", "").strip()
# TODO: Move cleaning to property updater
new_compound_name = request.POST.get("compound-name")
if new_compound_name is not None:
new_compound_name = nh3.clean(new_compound_name, tags=s.ALLOWED_HTML_TAGS).strip()
new_compound_description = request.POST.get("compound-description")
if new_compound_description is not None:
new_compound_description = nh3.clean(
new_compound_description, tags=s.ALLOWED_HTML_TAGS
).strip()
if new_compound_name:
current_compound.name = new_compound_name
@ -1268,7 +1294,7 @@ def package_compound_structures(request, package_uuid, compound_uuid):
elif request.method == "POST":
structure_name = request.POST.get("structure-name")
structure_smiles = request.POST.get("structure-smiles")
structure_smiles = request.POST.get("structure-smiles").strip()
structure_description = request.POST.get("structure-description")
try:
@ -1339,8 +1365,16 @@ def package_compound_structure(request, package_uuid, compound_uuid, structure_u
else:
return HttpResponseBadRequest()
new_structure_name = request.POST.get("compound-structure-name", "").strip()
new_structure_description = request.POST.get("compound-structure-description", "").strip()
# TODO: Move cleaning to property updater
new_structure_name = request.POST.get("compound-structure-name")
if new_structure_name is not None:
new_structure_name = nh3.clean(new_structure_name, tags=s.ALLOWED_HTML_TAGS).strip()
new_structure_description = request.POST.get("compound-structure-description")
if new_structure_description is not None:
new_structure_description = nh3.clean(
new_structure_description, tags=s.ALLOWED_HTML_TAGS
).strip()
if new_structure_name:
current_structure.name = new_structure_name
@ -1442,11 +1476,11 @@ def package_rules(request, package_uuid):
# Obtain parameters as required by rule type
if rule_type == "SimpleAmbitRule":
params["smirks"] = request.POST.get("rule-smirks")
params["smirks"] = request.POST.get("rule-smirks").strip()
params["reactant_filter_smarts"] = request.POST.get("rule-reactant-smarts")
params["product_filter_smarts"] = request.POST.get("rule-product-smarts")
elif rule_type == "SimpleRDKitRule":
params["reaction_smarts"] = request.POST.get("rule-reaction-smarts")
params["reaction_smarts"] = request.POST.get("rule-reaction-smarts").strip()
elif rule_type == "ParallelRule":
pass
elif rule_type == "SequentialRule":
@ -1547,8 +1581,14 @@ def package_rule(request, package_uuid, rule_uuid):
return JsonResponse({"success": current_rule.url})
rule_name = request.POST.get("rule-name", "").strip()
rule_description = request.POST.get("rule-description", "").strip()
# TODO: Move cleaning to property updater
rule_name = request.POST.get("rule-name")
if rule_name is not None:
rule_name = nh3.clean(rule_name, tags=s.ALLOWED_HTML_TAGS).strip()
rule_description = request.POST.get("rule-description")
if rule_description is not None:
rule_description = nh3.clean(rule_description, tags=s.ALLOWED_HTML_TAGS).strip()
if rule_name:
current_rule.name = rule_name
@ -1637,8 +1677,8 @@ def package_reactions(request, package_uuid):
elif request.method == "POST":
reaction_name = request.POST.get("reaction-name")
reaction_description = request.POST.get("reaction-description")
reactions_smirks = request.POST.get("reaction-smirks")
reactions_smirks = request.POST.get("reaction-smirks").strip()
educts = reactions_smirks.split(">>")[0].split(".")
products = reactions_smirks.split(">>")[1].split(".")
@ -1699,8 +1739,16 @@ def package_reaction(request, package_uuid, reaction_uuid):
return JsonResponse({"success": current_reaction.url})
new_reaction_name = request.POST.get("reaction-name", "").strip()
new_reaction_description = request.POST.get("reaction-description", "").strip()
# TODO: Move cleaning to property updater
new_reaction_name = request.POST.get("reaction-name")
if new_reaction_name is not None:
new_reaction_name = nh3.clean(new_reaction_name, tags=s.ALLOWED_HTML_TAGS).strip()
new_reaction_description = request.POST.get("reaction-description")
if new_reaction_description is not None:
new_reaction_description = nh3.clean(
new_reaction_description, tags=s.ALLOWED_HTML_TAGS
).strip()
if new_reaction_name:
current_reaction.name = new_reaction_name
@ -1777,8 +1825,9 @@ def package_pathways(request, package_uuid):
name = request.POST.get("name")
description = request.POST.get("description")
pw_mode = request.POST.get("predict", "predict").strip()
smiles = request.POST.get("smiles", "").strip()
pw_mode = request.POST.get("predict", "predict").strip()
if "smiles" in request.POST and smiles == "":
return error(
@ -1787,8 +1836,6 @@ def package_pathways(request, package_uuid):
"Pathway prediction failed due to missing or empty SMILES",
)
smiles = smiles.strip()
try:
stand_smiles = FormatConverter.standardize(smiles)
except ValueError:
@ -1947,8 +1994,14 @@ def package_pathway(request, package_uuid, pathway_uuid):
return JsonResponse({"success": current_pathway.url})
# TODO: Move cleaning to property updater
pathway_name = request.POST.get("pathway-name")
if pathway_name is not None:
pathway_name = nh3.clean(pathway_name, tags=s.ALLOWED_HTML_TAGS).strip()
pathway_description = request.POST.get("pathway-description")
if pathway_description is not None:
pathway_description = nh3.clean(pathway_description, tags=s.ALLOWED_HTML_TAGS).strip()
if any([pathway_name, pathway_description]):
if pathway_name is not None and pathway_name.strip() != "":
@ -2036,8 +2089,8 @@ def package_pathway_nodes(request, package_uuid, pathway_uuid):
elif request.method == "POST":
node_name = request.POST.get("node-name")
node_description = request.POST.get("node-description")
node_smiles = request.POST.get("node-smiles")
node_smiles = request.POST.get("node-smiles").strip()
current_pathway.add_node(node_smiles, name=node_name, description=node_description)
return redirect(current_pathway.url)
@ -2199,9 +2252,9 @@ def package_pathway_edges(request, package_uuid, pathway_uuid):
elif request.method == "POST":
log_post_params(request)
edge_name = request.POST.get("edge-name")
edge_description = request.POST.get("edge-description")
edge_substrates = request.POST.getlist("edge-substrates")
edge_products = request.POST.getlist("edge-products")
@ -2288,7 +2341,7 @@ def package_scenarios(request, package_uuid):
"all", False
):
scens = Scenario.objects.filter(package=current_package).order_by("name")
res = [{"name": s.name, "url": s.url, "uuid": s.uuid} for s in scens]
res = [{"name": s_.name, "url": s_.url, "uuid": s_.uuid} for s_ in scens]
return JsonResponse(res, safe=False)
context = get_base_context(request)
@ -2336,21 +2389,21 @@ def package_scenarios(request, package_uuid):
"name": "soil",
"widgets": [
HTMLGenerator.generate_html(ai, prefix=f"soil_{0}")
for ai in [x for s in SOIL_ADDITIONAL_INFORMATION.values() for x in s]
for ai in [x for sv in SOIL_ADDITIONAL_INFORMATION.values() for x in sv]
],
},
"Sludge Data": {
"name": "sludge",
"widgets": [
HTMLGenerator.generate_html(ai, prefix=f"sludge_{0}")
for ai in [x for s in SLUDGE_ADDITIONAL_INFORMATION.values() for x in s]
for ai in [x for sv in SLUDGE_ADDITIONAL_INFORMATION.values() for x in sv]
],
},
"Water-Sediment System Data": {
"name": "sediment",
"widgets": [
HTMLGenerator.generate_html(ai, prefix=f"sediment_{0}")
for ai in [x for s in SEDIMENT_ADDITIONAL_INFORMATION.values() for x in s]
for ai in [x for sv in SEDIMENT_ADDITIONAL_INFORMATION.values() for x in sv]
],
},
}
@ -2365,6 +2418,7 @@ def package_scenarios(request, package_uuid):
scenario_name = request.POST.get("scenario-name")
scenario_description = request.POST.get("scenario-description")
scenario_date_year = request.POST.get("scenario-date-year")
scenario_date_month = request.POST.get("scenario-date-month")
scenario_date_day = request.POST.get("scenario-date-day")
@ -2378,9 +2432,9 @@ def package_scenarios(request, package_uuid):
scenario_type = request.POST.get("scenario-type")
additional_information = HTMLGenerator.build_models(request.POST.dict())
additional_information = [x for s in additional_information.values() for x in s]
additional_information = [x for sv in additional_information.values() for x in sv]
s = Scenario.create(
new_scen = Scenario.create(
current_package,
name=scenario_name,
description=scenario_description,
@ -2389,7 +2443,7 @@ def package_scenarios(request, package_uuid):
additional_information=additional_information,
)
return redirect(s.url)
return redirect(new_scen.url)
else:
return HttpResponseNotAllowed(
[
@ -2689,6 +2743,7 @@ def settings(request):
name = request.POST.get("prediction-setting-name")
description = request.POST.get("prediction-setting-description")
new_default = request.POST.get("prediction-setting-new-default", "off") == "on"
max_nodes = min(

4
pnpm-lock.yaml generated Normal file
View File

@ -0,0 +1,4 @@
lockfileVersion: 6.0
specifiers: {}
dependencies: {}
packages: {}

View File

@ -27,10 +27,12 @@ dependencies = [
"scikit-learn>=1.6.1",
"sentry-sdk[django]>=2.32.0",
"setuptools>=80.8.0",
"nh3==0.3.2",
"polars==1.35.1",
]
[tool.uv.sources]
enviformer = { git = "ssh://git@git.envipath.com/enviPath/enviformer.git", rev = "v0.1.2" }
enviformer = { git = "ssh://git@git.envipath.com/enviPath/enviformer.git", rev = "v0.1.4" }
envipy-plugins = { git = "ssh://git@git.envipath.com/enviPath/enviPy-plugins.git", rev = "v0.1.0" }
envipy-additional-information = { git = "ssh://git@git.envipath.com/enviPath/enviPy-additional-information.git", rev = "v0.1.7"}
envipy-ambit = { git = "ssh://git@git.envipath.com/enviPath/enviPy-ambit.git" }

View File

@ -1,6 +1,5 @@
{% extends "framework.html" %}
{% load static %}
{% load envipytags %}
{% block content %}
<div class="panel-group" id="reviewListAccordion">

View File

@ -192,7 +192,7 @@
<div class="panel-body list-group-item" id="ReviewedContent">
{% if object_type == 'package' %}
{% for obj in reviewed_objects %}
<a class="list-group-item" href="{{ obj.url }}">{{ obj.name }}
<a class="list-group-item" href="{{ obj.url }}">{{ obj.name|safe }}
<span class="glyphicon glyphicon-star" aria-hidden="true"
style="float:right" data-toggle="tooltip"
data-placement="top" title="" data-original-title="Reviewed">
@ -201,7 +201,7 @@
{% endfor %}
{% else %}
{% for obj in reviewed_objects|slice:":50" %}
<a class="list-group-item" href="{{ obj.url }}">{{ obj.name }}{# <i>({{ obj.package.name }})</i> #}
<a class="list-group-item" href="{{ obj.url }}">{{ obj.name|safe }}{# <i>({{ obj.package.name }})</i> #}
<span class="glyphicon glyphicon-star" aria-hidden="true"
style="float:right" data-toggle="tooltip"
data-placement="top" title="" data-original-title="Reviewed">
@ -221,11 +221,11 @@
<div class="panel-body list-group-item" id="UnreviewedContent">
{% if object_type == 'package' %}
{% for obj in unreviewed_objects %}
<a class="list-group-item" href="{{ obj.url }}">{{ obj.name }}</a>
<a class="list-group-item" href="{{ obj.url }}">{{ obj.name|safe }}</a>
{% endfor %}
{% else %}
{% for obj in unreviewed_objects|slice:":50" %}
<a class="list-group-item" href="{{ obj.url }}">{{ obj.name }}</a>
<a class="list-group-item" href="{{ obj.url }}">{{ obj.name|safe }}</a>
{% endfor %}
{% endif %}
</div>
@ -236,9 +236,9 @@
<ul class='list-group'>
{% for obj in objects %}
{% if object_type == 'user' %}
<a class="list-group-item" href="{{ obj.url }}">{{ obj.username }}</a>
<a class="list-group-item" href="{{ obj.url }}">{{ obj.username|safe }}</a>
{% else %}
<a class="list-group-item" href="{{ obj.url }}">{{ obj.name }}</a>
<a class="list-group-item" href="{{ obj.url }}">{{ obj.name|safe }}</a>
{% endif %}
{% endfor %}
</ul>

View File

@ -26,12 +26,12 @@
{% endif %}
<h4 class="panel-title">
<a id="{{ obj.id }}-link" data-toggle="collapse" data-parent="#migration-detail"
href="#{{ obj.id }}">{{ obj.name }}</a>
href="#{{ obj.id }}">{{ obj.name|safe }}</a>
</h4>
</div>
<div id="{{ obj.id }}" class="panel-collapse collapse {% if not obj.status %}in{% endif %}">
<div class="panel-body list-group-item">
<a class="list-group-item" href="{{ obj.detail_url }}">{{ obj.name }} Migration Detail Page</a>
<a class="list-group-item" href="{{ obj.detail_url }}">{{ obj.name|safe }} Migration Detail Page</a>
</div>
</div>
{% endfor %}

View File

@ -27,7 +27,7 @@
{% endif %}
<h4 class="panel-title">
<a id="{{ obj.id }}-link" data-toggle="collapse" data-parent="#migration-detail"
href="#{{ obj.id }}">{{ obj.name }}</a>
href="#{{ obj.id }}">{{ obj.name|safe }}</a>
</h4>
</div>
<div id="{{ obj.id }}" class="panel-collapse collapse {% if not obj.status %}in{% endif %}">

View File

@ -1,3 +1,4 @@
<div class="modal fade" tabindex="-1" id="new_model_modal" role="dialog" aria-labelledby="new_model_modal"
aria-hidden="true">
<div class="modal-dialog modal-lg">
@ -47,14 +48,14 @@
<option disabled>Reviewed Packages</option>
{% for obj in meta.readable_packages %}
{% if obj.reviewed %}
<option value="{{ obj.url }}">{{ obj.name }}</option>
<option value="{{ obj.url }}">{{ obj.name|safe }}</option>
{% endif %}
{% endfor %}
<option disabled>Unreviewed Packages</option>
{% for obj in meta.readable_packages %}
{% if not obj.reviewed %}
<option value="{{ obj.url }}">{{ obj.name }}</option>
<option value="{{ obj.url }}">{{ obj.name|safe }}</option>
{% endif %}
{% endfor %}
</select>
@ -68,14 +69,14 @@
<option disabled>Reviewed Packages</option>
{% for obj in meta.readable_packages %}
{% if obj.reviewed %}
<option value="{{ obj.url }}">{{ obj.name }}</option>
<option value="{{ obj.url }}">{{ obj.name|safe }}</option>
{% endif %}
{% endfor %}
<option disabled>Unreviewed Packages</option>
{% for obj in meta.readable_packages %}
{% if not obj.reviewed %}
<option value="{{ obj.url }}">{{ obj.name }}</option>
<option value="{{ obj.url }}">{{ obj.name|safe }}</option>
{% endif %}
{% endfor %}
</select>

View File

@ -1,3 +1,4 @@
{% load static %}
<div class="modal fade" tabindex="-1" id="new_pathway_modal" role="dialog" aria-labelledby="new_pathway_modal"
aria-hidden="true" style="overflow-y: auto;">
@ -111,7 +112,7 @@
<select id="settingSelect" name="settingSelect" class="form-control">
{% for setting in available_settings %}
<option value="{{ setting.id }}">{{ setting.name }}</option>
<option value="{{ setting.id }}">{{ setting.name|safe }}</option>
{% endfor %}
</select>
<p></p>

View File

@ -1,3 +1,4 @@
{% load static %}
<div id="new_prediction_setting_modal" class="modal" tabindex="-1">
@ -40,14 +41,14 @@
<option disabled>Reviewed Packages</option>
{% for obj in meta.readable_packages %}
{% if obj.reviewed %}
<option value="{{ obj.url }}">{{ obj.name }}</option>
<option value="{{ obj.url }}">{{ obj.name|safe }}</option>
{% endif %}
{% endfor %}
<option disabled>Unreviewed Packages</option>
{% for obj in meta.readable_packages %}
{% if not obj.reviewed %}
<option value="{{ obj.url }}">{{ obj.name }}</option>
<option value="{{ obj.url }}">{{ obj.name|safe }}</option>
{% endif %}
{% endfor %}
</select>
@ -57,7 +58,7 @@
<select id="model-based-prediction-setting-model" name="model-based-prediction-setting-model" class="form-control" data-width='100%'>
<option disabled selected>Select the model</option>
{% for m in models %}
<option value="{{ m.url }}">{{ m.name }}</option>
<option value="{{ m.url }}">{{ m.name|safe }}</option>
{% endfor %}
</select>
<label for="model-based-prediction-setting-threshold">Threshold</label>

View File

@ -1,3 +1,4 @@
{% load static %}
<div class="modal fade bs-modal-lg" id="add_pathway_edge_modal" tabindex="-1" aria-labelledby="add_pathway_edge_modal"
aria-modal="true"
@ -36,7 +37,7 @@
<select id="add_pathway_edge_substrates" name="edge-substrates"
data-actions-box='true' class="form-control" multiple data-width='100%'>
{% for n in pathway.nodes %}
<option data-smiles="{{ n.default_node_label.smiles }}" value="{{ n.url }}">{{ n.default_node_label.name }}</option>
<option data-smiles="{{ n.default_node_label.smiles }}" value="{{ n.url }}">{{ n.default_node_label.name|safe }}</option>
{% endfor %}
</select>
</div>
@ -47,7 +48,7 @@
<select id="add_pathway_edge_products" name="edge-products"
data-actions-box='true' class="form-control" multiple data-width='100%'>
{% for n in pathway.nodes %}
<option data-smiles="{{ n.default_node_label.smiles }}" value="{{ n.url }}">{{ n.default_node_label.name }}</option>
<option data-smiles="{{ n.default_node_label.smiles }}" value="{{ n.url }}">{{ n.default_node_label.name|safe }}</option>
{% endfor %}
</select>
</div>

View File

@ -1,3 +1,4 @@
{% load static %}
<!-- Delete Edge -->
<div id="delete_pathway_edge_modal" class="modal" tabindex="-1">
@ -19,7 +20,7 @@
data-actions-box='true' class="form-control" data-width='100%'>
<option value="" disabled selected>Select Reaction to delete</option>
{% for e in pathway.edges %}
<option value="{{ e.url }}">{{ e.edge_label.name }}</option>
<option value="{{ e.url }}">{{ e.edge_label.name|safe }}</option>
{% endfor %}
</select>
<input type="hidden" id="hidden" name="hidden" value="delete"/>

View File

@ -1,4 +1,5 @@
{% load static %}
<!-- Delete Node -->
<div id="delete_pathway_node_modal" class="modal" tabindex="-1">
<div class="modal-dialog">
@ -19,7 +20,7 @@
data-actions-box='true' class="form-control" data-width='100%'>
<option value="" disabled selected>Select Compound to delete</option>
{% for n in pathway.nodes %}
<option value="{{ n.url }}">{{ n.default_node_label.name }}</option>
<option value="{{ n.url }}">{{ n.default_node_label.name|safe }}</option>
{% endfor %}
</select>
<input type="hidden" id="hidden" name="hidden" value="delete"/>

View File

@ -1,3 +1,4 @@
{% load static %}
<!-- Edit Compound -->
<div id="edit_compound_modal" class="modal" tabindex="-1">
@ -15,12 +16,12 @@
{% csrf_token %}
<p>
<label for="compound-name">Name</label>
<input id="compound-name" class="form-control" name="compound-name" value="{{ compound.name}}">
<input id="compound-name" class="form-control" name="compound-name" value="{{ compound.name|safe}}">
</p>
<p>
<label for="compound-description">Description</label>
<input id="compound-description" type="text" class="form-control"
value="{{ compound.description }}"
value="{{ compound.description|safe }}"
name="compound-description">
</p>
</form>

View File

@ -1,3 +1,4 @@
{% load static %}
<!-- Edit Compound -->
<div id="edit_compound_structure_modal" class="modal" tabindex="-1">
@ -15,12 +16,12 @@
{% csrf_token %}
<p>
<label for="compound-structure-name">Name</label>
<input id="compound-structure-name" class="form-control" name="compound-structure-name" value="{{ compound_structure.name }}">
<input id="compound-structure-name" class="form-control" name="compound-structure-name" value="{{ compound_structure.name|safe }}">
</p>
<p>
<label for="compound-structure-description">Description</label>
<input id="compound-structure-description" type="text" class="form-control"
value="{{ compound_structure.description }}" name="compound-structure-description">
value="{{ compound_structure.description|safe }}" name="compound-structure-description">
</p>
</form>
</div>

View File

@ -1,3 +1,4 @@
{% load static %}
<!-- Edit Package Permission -->
<div id="edit_group_member_modal" class="modal" tabindex="-1">
@ -39,7 +40,7 @@
{% endfor %}
<option disabled>Groups</option>
{% for g in groups %}
<option value="{{ g.url }}">{{ g.name }}</option>
<option value="{{ g.url }}">{{ g.name|safe }}</option>
{% endfor %}
</select>
<input type="hidden" name="action" value="add">
@ -81,7 +82,7 @@
accept-charset="UTF-8" action="" data-remote="true" method="post">
{% csrf_token %}
<div class="col-xs-8">
{{ g.name }}
{{ g.name|safe }}
<input type="hidden" name="member" value="{{ g.url }}"/>
<input type="hidden" name="action" value="remove">
</div>

View File

@ -1,3 +1,4 @@
{% load static %}
<!-- Edit Model -->
<div id="edit_model_modal" class="modal" tabindex="-1">
@ -16,12 +17,12 @@
<p>
<label for="model-name">Name</label>
<input id="model-name" type="text" class="form-control" name="model-name"
value="{{ model.name }}">
value="{{ model.name|safe }}">
</p>
<p>
<label for="model-description">Description</label>
<input id="model-description" type="text" class="form-control" name="model-description"
value="{{ model.description }}">
value="{{ model.description|safe }}">
</p>
</form>
</div>

View File

@ -1,3 +1,4 @@
{% load static %}
<!-- Edit Node -->
<div id="edit_node_modal" class="modal" tabindex="-1">
@ -15,12 +16,12 @@
{% csrf_token %}
<p>
<label for="node-name">Name</label>
<input id="node-name" class="form-control" name="node-name" value="{{ node.name}}">
<input id="node-name" class="form-control" name="node-name" value="{{ node.name|safe}}">
</p>
<p>
<label for="node-description">Description</label>
<input id="node-description" type="text" class="form-control"
value="{{ node.description }}"
value="{{ node.description|safe }}"
name="node-description">
</p>
</form>

View File

@ -1,3 +1,4 @@
{% load static %}
<!-- Edit Package -->
<div id="edit_package_modal" class="modal" tabindex="-1">
@ -15,12 +16,12 @@
{% csrf_token %}
<p>
<label for="package-name">Name</label>
<input id="package-name" class="form-control" name="package-name" value="{{ package.name}}">
<input id="package-name" class="form-control" name="package-name" value="{{ package.name|safe}}">
</p>
<p>
<label for="package-description">Description</label>
<input id="package-description" type="text" class="form-control"
value="{{ package.description }}"
value="{{ package.description|safe }}"
name="package-description">
</p>
</form>

View File

@ -1,3 +1,4 @@
{% load static %}
<!-- Edit Package Permission -->
<div id="edit_package_permissions_modal" class="modal" tabindex="-1">
@ -46,7 +47,7 @@
{% endfor %}
<option disabled>Groups</option>
{% for g in groups %}
<option value="{{ g.url }}">{{ g.name }}</option>
<option value="{{ g.url }}">{{ g.name|safe }}</option>
{% endfor %}
</select>
</div>
@ -100,7 +101,7 @@
accept-charset="UTF-8" action="" data-remote="true" method="post">
{% csrf_token %}
<div class="col-xs-4">
{{ gp.group.name }}
{{ gp.group.name|safe }}
<input type="hidden" name="grantee" value="{{ gp.group.url }}"/>
</div>
<div class="col-xs-2">

View File

@ -1,3 +1,4 @@
{% load static %}
<!-- Edit Pathway -->
<div id="edit_pathway_modal" class="modal" tabindex="-1">
@ -15,12 +16,12 @@
{% csrf_token %}
<p>
<label for="pathway-name">Name</label>
<input id="pathway-name" class="form-control" name="pathway-name" value="{{ pathway.name }}">
<input id="pathway-name" class="form-control" name="pathway-name" value="{{ pathway.name|safe }}">
</p>
<p>
<label for="pathway-description">Description</label>
<textarea id="pathway-description" type="text" class="form-control" name="pathway-description"
rows="10">{{ pathway.description }}</textarea>
rows="10">{{ pathway.description|safe }}</textarea>
</p>
</form>
</div>

View File

@ -32,7 +32,7 @@
<td colspan="2">
<select id="model" name="model" class="form-control" data-width='100%'>
{% for m in models %}
<option value="{{ m.id }}" {% if user.prediction_settings.model.url == m.url %}selected{% endif %}>{{ m.name }}</option>
<option value="{{ m.id }}" {% if user.prediction_settings.model.url == m.url %}selected{% endif %}>{{ m.name|safe }}</option>
{% endfor %}
</select>
</td>

View File

@ -1,3 +1,4 @@
{% load static %}
<!-- Edit Reaction -->
<div id="edit_reaction_modal" class="modal" tabindex="-1">
@ -14,12 +15,12 @@
{% csrf_token %}
<p>
<label for="reaction-name">Name</label>
<input id="reaction-name" class="form-control" name="reaction-name" value="{{ reaction.name }}">
<input id="reaction-name" class="form-control" name="reaction-name" value="{{ reaction.name|safe }}">
</p>
<p>
<label for="reaction-description">Description</label>
<input id="reaction-description" type="text" class="form-control"
value="{{ reaction.description }}" name="reaction-description">
value="{{ reaction.description|safe }}" name="reaction-description">
</p>
</form>
</div>

View File

@ -1,3 +1,4 @@
{% load static %}
<!-- Edit Rule -->
<div id="edit_rule_modal" class="modal" tabindex="-1">
@ -14,12 +15,12 @@
{% csrf_token %}
<p>
<label for="rule-name">Name</label>
<input id="rule-name" class="form-control" name="rule-name" value="{{ rule.name }}">
<input id="rule-name" class="form-control" name="rule-name" value="{{ rule.name|safe }}">
</p>
<p>
<label for="rule-description">Description</label>
<input id="rule-description" type="text" class="form-control"
value="{{ rule.description }}" name="rule-description">
value="{{ rule.description|safe }}" name="rule-description">
</p>
</form>
</div>

View File

@ -1,3 +1,4 @@
{% load static %}
<!-- Edit User -->
<div id="edit_user_modal" class="modal" tabindex="-1">
@ -18,7 +19,7 @@
<select id="default-package" name="default-package" class="form-control" data-width='100%'>
<option disabled>Select a Package</option>
{% for p in meta.writeable_packages %}
<option value="{{ p.url }}" {% if p.id == meta.user.default_package.id %}selected{% endif %}>{{ p.name }}</option>
<option value="{{ p.url }}" {% if p.id == meta.user.default_package.id %}selected{% endif %}>{{ p.name|safe }}</option>
{% endfor %}
</select>
</p>
@ -27,7 +28,7 @@
<select id="default-group" name="default-group" class="form-control" data-width='100%'>
<option disabled>Select a Group</option>
{% for g in meta.available_groups %}
<option value="{{ g.url }}" {% if g.id == meta.user.default_group.id %}selected{% endif %}>{{ g.name }}</option>
<option value="{{ g.url }}" {% if g.id == meta.user.default_group.id %}selected{% endif %}>{{ g.name|safe }}</option>
{% endfor %}
</select>
</p>
@ -36,7 +37,7 @@
<select id="default-prediction-setting" name="default-prediction-setting" class="form-control" data-width='100%'>
<option disabled>Select a Setting</option>
{% for s in meta.available_settings %}
<option value="{{ s.url }}" {% if s.id == meta.user.default_setting.id %}selected{% endif %}>{{ s.name }}</option>
<option value="{{ s.url }}" {% if s.id == meta.user.default_setting.id %}selected{% endif %}>{{ s.name|safe }}</option>
{% endfor %}
</select>
</p>

View File

@ -1,3 +1,4 @@
<div class="modal fade" tabindex="-1" id="evaluate_model_modal" role="dialog" aria-labelledby="evaluate_model_modal"
aria-hidden="true">
<div class="modal-dialog modal-lg">
@ -24,14 +25,14 @@
<option disabled>Reviewed Packages</option>
{% for obj in meta.readable_packages %}
{% if obj.reviewed %}
<option value="{{ obj.url }}">{{ obj.name }}</option>
<option value="{{ obj.url }}">{{ obj.name|safe }}</option>
{% endif %}
{% endfor %}
<option disabled>Unreviewed Packages</option>
{% for obj in meta.readable_packages %}
{% if not obj.reviewed %}
<option value="{{ obj.url }}">{{ obj.name }}</option>
<option value="{{ obj.url }}">{{ obj.name|safe }}</option>
{% endif %}
{% endfor %}
</select>

View File

@ -1,3 +1,4 @@
{% load static %}
<!-- Copy Object -->
<div id="generic_copy_object_modal" class="modal" tabindex="-1">
@ -18,7 +19,7 @@
data-width='100%'>
<option disabled selected>Select Target Package</option>
{% for p in meta.writeable_packages %}
<option value="{{ p.url }}">{{ p.name }}</option>`
<option value="{{ p.url }}">{{ p.name|safe }}</option>`
{% endfor %}
</select>
<input type="hidden" name="hidden" value="copy">

View File

@ -1,3 +1,4 @@
{% load static %}
<style>
@ -55,7 +56,7 @@
<button type="button" class="close" data-dismiss="modal" aria-label="Close">
<span aria-hidden="true">×</span>
</button>
<h4 class="modal-title">Set Aliases for {{ current_object.name }}</h4>
<h4 class="modal-title">Set Aliases for {{ current_object.name|safe }}</h4>
</div>
<div class="modal-body">
<form id="set_aliases_modal_form" accept-charset="UTF-8" action="{{ current_object.url }}"

View File

@ -1,3 +1,4 @@
{% load static %}
<!-- Delete Object -->
<div id="generic_set_external_reference_modal" class="modal" tabindex="-1">
@ -23,7 +24,7 @@
{% if entity == object_type %}
{% for db in databases %}
<option id="db-select-{{ db.database.pk }}" data-input-placeholder="{{ db.placeholder }}"
value="{{ db.database.id }}">{{ db.database.name }}</option>`
value="{{ db.database.id }}">{{ db.database.name|safe }}</option>`
{% endfor %}
{% endif %}
{% endfor %}

View File

@ -1,3 +1,4 @@
{% load static %}
<div class="modal fade bs-modal-lg" id="set_scenario_modal" tabindex="-1" aria-labelledby="set_scenario_modal"
aria-modal="true" role="dialog">
@ -7,7 +8,7 @@
<button type="button" class="close" data-dismiss="modal" aria-label="Close">
<span aria-hidden="true">×</span>
</button>
<h4 class="modal-title">Set Scenarios for {{ current_object.name }}</h4>
<h4 class="modal-title">Set Scenarios for {{ current_object.name|safe }}</h4>
</div>
<div class="modal-body">
<div id="loading_scenario_div" class="text-center"></div>

View File

@ -1,3 +1,4 @@
<div class="modal fade"
tabindex="-1"
id="manage_api_token_modal"
@ -41,7 +42,7 @@
<div class="input-group">
<input type="hidden" name="hidden" value="delete">
<input type="hidden" name="token-id" value="{{ t.pk }}">
<input type="text" class="form-control" value="{{ t.name }}" disabled>
<input type="text" class="form-control" value="{{ t.name|safe }}" disabled>
<span class="input-group-btn">
<button type="submit" class="btn btn-danger">Delete</button>
</span>

View File

@ -56,7 +56,7 @@
<option disabled>Select a Setting</option>
{% for s in meta.available_settings %}
<option value="{{ s.url }}"{% if s.id == meta.user.default_setting.id %}selected{% endif %}>
{{ s.name }}{% if s.id == meta.user.default_setting.id %} <i>(User default)</i>{% endif %}
{{ s.name|safe }}{% if s.id == meta.user.default_setting.id %} <i>(User default)</i>{% endif %}
</option>
{% endfor %}
</select>

View File

@ -13,7 +13,7 @@
<div class="panel-group" id="rule-detail">
<div class="panel panel-default">
<div class="panel-heading" id="headingPanel" style="font-size:2rem;height: 46px">
{{ rule.name }}
{{ rule.name|safe }}
<div id="actionsButton"
style="float: right;font-weight: normal;font-size: medium;position: relative; top: 50%; transform: translateY(-50%);z-index:100;display: none;"
class="dropdown"><a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button"
@ -60,7 +60,7 @@
<div id="rule-reaction-patterns" class="panel-collapse collapse in">
<div class="panel-body list-group-item">
{% for r in rule.srs %}
<a class="list-group-item" href="{{ r.url }}">{{ r.name }}</a>
<a class="list-group-item" href="{{ r.url }}">{{ r.name|safe }}</a>
<div align="center">
<p>
{{r.as_svg|safe}}
@ -81,7 +81,7 @@
<div id="rule-scenario" class="panel-collapse collapse in">
<div class="panel-body list-group-item">
{% for s in rule.scenarios.all %}
<a class="list-group-item" href="{{ s.url }}">{{ s.name }} <i>({{ s.package.name }})</i></a>
<a class="list-group-item" href="{{ s.url }}">{{ s.name|safe }} <i>({{ s.package.name|safe }})</i></a>
{% endfor %}
</div>
</div>

View File

@ -15,7 +15,7 @@
<div class="panel-group" id="compound-detail">
<div class="panel panel-default">
<div class="panel-heading" id="headingPanel" style="font-size:2rem;height: 46px">
{{ compound.name }}
{{ compound.name|safe }}
<div id="actionsButton"
style="float: right;font-weight: normal;font-size: medium;position: relative; top: 50%; transform: translateY(-50%);z-index:100;display: none;"
class="dropdown"><a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button"
@ -64,7 +64,7 @@
</div>
<div id="compound-desc" class="panel-collapse collapse in">
<div class="panel-body list-group-item">
{{ compound.description }}
{{ compound.description|safe }}
</div>
</div>
@ -133,7 +133,7 @@
<div id="compound-reaction" class="panel-collapse collapse in">
<div class="panel-body list-group-item">
{% for r in compound.related_reactions %}
<a class="list-group-item" href="{{ r.url }}">{{ r.name }} <i>({{ r.package.name }})</i></a>
<a class="list-group-item" href="{{ r.url }}">{{ r.name|safe }} <i>({{ r.package.name|safe }})</i></a>
{% endfor %}
</div>
</div>
@ -150,7 +150,7 @@
<div id="compound-pathway" class="panel-collapse collapse in">
<div class="panel-body list-group-item">
{% for r in compound.related_pathways %}
<a class="list-group-item" href="{{ r.url }}">{{ r.name }} <i>({{ r.package.name }})</i></a>
<a class="list-group-item" href="{{ r.url }}">{{ r.name|safe }} <i>({{ r.package.name|safe }})</i></a>
{% endfor %}
</div>
</div>
@ -167,7 +167,7 @@
<div id="compound-scenario" class="panel-collapse collapse in">
<div class="panel-body list-group-item">
{% for s in compound.scenarios.all %}
<a class="list-group-item" href="{{ s.url }}">{{ s.name }} <i>({{ s.package.name }})</i></a>
<a class="list-group-item" href="{{ s.url }}">{{ s.name|safe }} <i>({{ s.package.name|safe }})</i></a>
{% endfor %}
</div>
</div>

View File

@ -13,7 +13,7 @@
<div class="panel-group" id="compound-structure-detail">
<div class="panel panel-default">
<div class="panel-heading" id="headingPanel" style="font-size:2rem;height: 46px">
{{ compound_structure.name }}
{{ compound_structure.name|safe }}
<div id="actionsButton"
style="float: right;font-weight: normal;font-size: medium;position: relative; top: 50%; transform: translateY(-50%);z-index:100;display: none;"
class="dropdown"><a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button"
@ -28,7 +28,7 @@
</div>
</div>
<div class="panel-body">
<p> {{ compound_structure.description }} </p>
<p> {{ compound_structure.description|safe }} </p>
</div>
<!-- Image -->
@ -86,7 +86,7 @@
<div id="compound-structure-scenario" class="panel-collapse collapse in">
<div class="panel-body list-group-item">
{% for s in compound_structure.scenarios.all %}
<a class="list-group-item" href="{{ s.url }}">{{ s.name }} <i>({{ s.package.name }})</i></a>
<a class="list-group-item" href="{{ s.url }}">{{ s.name|safe }} <i>({{ s.package.name|safe }})</i></a>
{% endfor %}
</div>
</div>

View File

@ -12,7 +12,7 @@
<div class="panel-group" id="edge-detail">
<div class="panel panel-default">
<div class="panel-heading" id="headingPanel" style="font-size:2rem;height: 46px">
{{ edge.edge_label.name }}
{{ edge.edge_label.name|safe }}
<div id="actionsButton"
style="float: right;font-weight: normal;font-size: medium;position: relative; top: 50%; transform: translateY(-50%);z-index:100;display: none;"
class="dropdown"><a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button"
@ -36,7 +36,7 @@
</div>
<div id="edge-desc" class="panel-collapse collapse in">
<div class="panel-body list-group-item">
{{ edge.description }}
{{ edge.description|safe }}
</div>
</div>
@ -82,12 +82,12 @@
<div id="edge-description-smiles" class="panel-collapse collapse in">
<div class="panel-body list-group-item">
{% for educt in edge.start_nodes.all %}
<a class="btn btn-default" href="{{ educt.url }}">{{ educt.name }}</a>
<a class="btn btn-default" href="{{ educt.url }}">{{ educt.name|safe }}</a>
{% endfor %}
<span class="glyphicon glyphicon-arrow-right" style="margin-left:5em;margin-right:5em;"
aria-hidden="true"></span>
{% for product in edge.end_nodes.all %}
<a class="btn btn-default" href="{{ product.url }}">{{ product.name }}</a>
<a class="btn btn-default" href="{{ product.url }}">{{ product.name|safe }}</a>
{% endfor %}
</div>
</div>
@ -116,7 +116,7 @@
<div id="edge-rules" class="panel-collapse collapse in">
<div class="panel-body list-group-item">
{% for r in edge.edge_label.rules.all %}
<a class="list-group-item" href="{{ r.url }}">{{ r.name }}</a>
<a class="list-group-item" href="{{ r.url }}">{{ r.name|safe }}</a>
{% endfor %}
</div>
</div>
@ -132,7 +132,7 @@
<div id="edge-scenario" class="panel-collapse collapse in">
<div class="panel-body list-group-item">
{% for s in edge.scenarios.all %}
<a class="list-group-item" href="{{ s.url }}">{{ s.name }} <i>({{ s.package.name }})</i></a>
<a class="list-group-item" href="{{ s.url }}">{{ s.name|safe }} <i>({{ s.package.name|safe }})</i></a>
{% endfor %}
</div>
</div>

View File

@ -11,7 +11,7 @@
<div class="panel-group" id="package-detail">
<div class="panel panel-default">
<div class="panel-heading" id="headingPanel" style="font-size:2rem;height: 46px">
{{ group.name }}
{{ group.name|safe }}
<div id="actionsButton"
style="float: right;font-weight: normal;font-size: medium;position: relative; top: 50%; transform: translateY(-50%);z-index:100;display: none;"
class="dropdown"><a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button"
@ -26,7 +26,7 @@
</div>
</div>
<div class="panel-body">
<p> {{ group.description }} </p>
<p> {{ group.description|safe }} </p>
</div>
</div>
@ -39,10 +39,10 @@
</div>
<ul class="list-group">
{% for um in group.user_member.all %}
<a class="list-group-item" href="{{ um.url }}">{{ um.username }}</a>
<a class="list-group-item" href="{{ um.url }}">{{ um.username|safe }}</a>
{% endfor %}
{% for gm in group.group_member.all %}
<a class="list-group-item" href="{{ gm.url }}">{{ gm.name }}</a>
<a class="list-group-item" href="{{ gm.url }}">{{ gm.name|safe }}</a>
{% endfor %}
</ul>
</div>
@ -56,7 +56,7 @@
</div>
<ul class="list-group">
{% for p in packages %}
<a class="list-group-item" href="{{ p.url }}">{{ p.name }}</a>
<a class="list-group-item" href="{{ p.url }}">{{ p.name|safe }}</a>
{% endfor %}
</ul>
</div>

View File

@ -1,6 +1,5 @@
{% extends "framework.html" %}
{% load static %}
{% load envipytags %}
{% block content %}
{% block action_modals %}
@ -18,7 +17,7 @@
<div class="panel-group" id="model-detail">
<div class="panel panel-default">
<div class="panel-heading" id="headingPanel" style="font-size:2rem;height: 46px">
{{ model.name }}
{{ model.name|safe }}
<div id="actionsButton"
style="float: right;font-weight: normal;font-size: medium;position: relative; top: 50%; transform: translateY(-50%);z-index:100;display: none;"
class="dropdown"><a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button"
@ -33,7 +32,7 @@
</div>
</div>
<div class="panel-body">
<p> {{ model.description }} </p>
<p> {{ model.description|safe }} </p>
</div>
{% if model|classname == 'MLRelativeReasoning' or model|classname == 'RuleBasedRelativeReasoning'%}
<!-- Rule Packages -->
@ -46,7 +45,7 @@
<div id="rule-package" class="panel-collapse collapse in">
<div class="panel-body list-group-item">
{% for p in model.rule_packages.all %}
<a class="list-group-item" href="{{ p.url }}">{{ p.name }}</a>
<a class="list-group-item" href="{{ p.url }}">{{ p.name|safe }}</a>
{% endfor %}
</div>
</div>
@ -60,7 +59,7 @@
<div id="reaction-package" class="panel-collapse collapse in">
<div class="panel-body list-group-item">
{% for p in model.data_packages.all %}
<a class="list-group-item" href="{{ p.url }}">{{ p.name }}</a>
<a class="list-group-item" href="{{ p.url }}">{{ p.name|safe }}</a>
{% endfor %}
</div>
</div>
@ -75,7 +74,7 @@
<div id="eval-package" class="panel-collapse collapse in">
<div class="panel-body list-group-item">
{% for p in model.eval_packages.all %}
<a class="list-group-item" href="{{ p.url }}">{{ p.name }}</a>
<a class="list-group-item" href="{{ p.url }}">{{ p.name|safe }}</a>
{% endfor %}
</div>
</div>

View File

@ -12,7 +12,7 @@
<div class="panel-group" id="node-detail">
<div class="panel panel-default">
<div class="panel-heading" id="headingPanel" style="font-size:2rem;height: 46px">
{{ node.name }}
{{ node.name|safe }}
<div id="actionsButton"
style="float: right;font-weight: normal;font-size: medium;position: relative; top: 50%; transform: translateY(-50%);z-index:100;display: none;"
class="dropdown"><a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button"
@ -39,7 +39,7 @@
</div>
<div id="node-desc" class="panel-collapse collapse in">
<div class="panel-body list-group-item">
{{ node.description }}
{{ node.description|safe }}
</div>
</div>
@ -98,7 +98,7 @@
<div id="node-scenario" class="panel-collapse collapse in">
<div class="panel-body list-group-item">
{% for s in node.scenarios.all %}
<a class="list-group-item" href="{{ s.url }}">{{ s.name }} <i>({{ s.package.name }})</i></a>
<a class="list-group-item" href="{{ s.url }}">{{ s.name|safe }} <i>({{ s.package.name|safe }})</i></a>
{% endfor %}
</div>
</div>

View File

@ -14,7 +14,7 @@
<div class="panel-group" id="package-detail">
<div class="panel panel-default">
<div class="panel-heading" id="headingPanel" style="font-size:2rem;height: 46px">
{{ package.name }}
{{ package.name|safe }}
<div id="actionsButton"
style="float: right;font-weight: normal;font-size: medium;position: relative; top: 50%; transform: translateY(-50%);z-index:100;display: none;"
class="dropdown"><a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button"

View File

@ -98,7 +98,7 @@
<div class="panel-group" id="pwAccordion">
<div class="panel panel-default">
<div class="panel-heading" id="headingPanel" style="font-size:2rem;height: 46px">
{{ pathway.name }}
{{ pathway.name|safe }}
</div>
</div>
<div class="panel panel-default panel-heading list-group-item" style="background-color:silver">
@ -236,7 +236,7 @@
<div id="pathway-scenario" class="panel-collapse collapse in">
<div class="panel-body list-group-item">
{% for s in pathway.scenarios.all %}
<a class="list-group-item" href="{{ s.url }}">{{ s.name }} <i>({{ s.package.name }})</i></a>
<a class="list-group-item" href="{{ s.url }}">{{ s.name|safe }} <i>({{ s.package.name|safe }})</i></a>
{% endfor %}
</div>
</div>
@ -266,7 +266,7 @@
<td colspan="2">
<li class="list-group-item">
<a href="{{ pathway.setting.model.url }}">
{{ pathway.setting.model.name }}
{{ pathway.setting.model.name|safe }}
</a>
</li>
</td>
@ -299,7 +299,7 @@
{% for p in pathway.setting.rule_packages.all %}
<li class="list-group-item">
<a href="{{ p.url }}">
{{ p.name }}
{{ p.name|safe }}
</a>
</li>
{% endfor %}

View File

@ -14,7 +14,7 @@
<div class="panel-group" id="reaction-detail">
<div class="panel panel-default">
<div class="panel-heading" id="headingPanel" style="font-size:2rem;height: 46px">
{{ reaction.name }}
{{ reaction.name|safe }}
<div id="actionsButton"
style="float: right;font-weight: normal;font-size: medium;position: relative; top: 50%; transform: translateY(-50%);z-index:100;display: none;"
class="dropdown"><a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button"
@ -38,7 +38,7 @@
</div>
<div id="reaction-desc" class="panel-collapse collapse in">
<div class="panel-body list-group-item">
{{ reaction.description }}
{{ reaction.description|safe }}
</div>
</div>
@ -84,12 +84,12 @@
<div id="reaction-description-smiles" class="panel-collapse collapse in">
<div class="panel-body list-group-item">
{% for educt in reaction.educts.all %}
<a class="btn btn-default" href="{{ educt.url }}">{{ educt.name }}</a>
<a class="btn btn-default" href="{{ educt.url }}">{{ educt.name|safe }}</a>
{% endfor %}
<span class="glyphicon glyphicon-arrow-right" style="margin-left:5em;margin-right:5em;"
aria-hidden="true"></span>
{% for product in reaction.products.all %}
<a class="btn btn-default" href="{{ product.url }}">{{ product.name }}</a>
<a class="btn btn-default" href="{{ product.url }}">{{ product.name|safe }}</a>
{% endfor %}
</div>
</div>
@ -118,7 +118,7 @@
<div id="reaction-rules" class="panel-collapse collapse in">
<div class="panel-body list-group-item">
{% for r in reaction.rules.all %}
<a class="list-group-item" href="{{ r.url }}">{{ r.name }}</a>
<a class="list-group-item" href="{{ r.url }}">{{ r.name|safe }}</a>
{% endfor %}
</div>
</div>
@ -152,7 +152,7 @@
<div id="reaction-pathway" class="panel-collapse collapse in">
<div class="panel-body list-group-item">
{% for r in reaction.related_pathways %}
<a class="list-group-item" href="{{ r.url }}">{{ r.name }}</a>
<a class="list-group-item" href="{{ r.url }}">{{ r.name|safe }}</a>
{% endfor %}
</div>
</div>
@ -168,7 +168,7 @@
<div id="reaction-scenario" class="panel-collapse collapse in">
<div class="panel-body list-group-item">
{% for s in reaction.scenarios.all %}
<a class="list-group-item" href="{{ s.url }}">{{ s.name }} <i>({{ s.package.name }})</i></a>
<a class="list-group-item" href="{{ s.url }}">{{ s.name|safe }} <i>({{ s.package.name|safe }})</i></a>
{% endfor %}
</div>
</div>

View File

@ -10,7 +10,7 @@
<div class="panel-group" id="scenario-detail">
<div class="panel panel-default">
<div class="panel-heading" id="headingPanel" style="font-size:2rem;height: 46px">
{{ scenario.name }}
{{ scenario.name|safe }}
<div id="actionsButton"
style="float: right;font-weight: normal;font-size: medium;position: relative; top: 50%; transform: translateY(-50%);z-index:100;display: none;"
class="dropdown"><a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button"
@ -30,7 +30,7 @@
<div class="panel panel-default">
<div class="panel-heading">Description</div>
<div class="panel-body">
{{ scenario.description }}
{{ scenario.description|safe }}
<br>
{{ scenario.scenario_type }}
<br>

View File

@ -13,7 +13,7 @@
<div class="panel-group" id="rule-detail">
<div class="panel panel-default">
<div class="panel-heading" id="headingPanel" style="font-size:2rem;height: 46px">
{{ rule.name }}
{{ rule.name|safe }}
<div id="actionsButton"
style="float: right;font-weight: normal;font-size: medium;position: relative; top: 50%; transform: translateY(-50%);z-index:100;display: none;"
class="dropdown"><a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button"
@ -29,7 +29,7 @@
</div>
<div class="panel-body">
<p>
{{ rule.description }}
{{ rule.description|safe }}
</p>
</div>
@ -145,7 +145,7 @@
<div id="rule-composite-rule" class="panel-collapse collapse in">
<div class="panel-body list-group-item">
{% for cr in rule.parallelrule_set.all %}
<a class="list-group-item" href="{{ cr.url }}">{{ cr.name }}</a>
<a class="list-group-item" href="{{ cr.url }}">{{ cr.name|safe }}</a>
{% endfor %}
</div>
</div>
@ -162,7 +162,7 @@
<div id="rule-scenario" class="panel-collapse collapse in">
<div class="panel-body list-group-item">
{% for s in rule.scenarios.all %}
<a class="list-group-item" href="{{ s.url }}">{{ s.name }}</a>
<a class="list-group-item" href="{{ s.url }}">{{ s.name|safe }}</a>
{% endfor %}
</div>
</div>
@ -179,7 +179,7 @@
<div id="rule-reaction" class="panel-collapse collapse">
<div class="panel-body list-group-item">
{% for r in rule.related_reactions %}
<a class="list-group-item" href="{{ r.url }}">{{ r.name }}</a>
<a class="list-group-item" href="{{ r.url }}">{{ r.name|safe }}</a>
{% endfor %}
</div>
</div>
@ -196,7 +196,7 @@
<div id="rule-pathway" class="panel-collapse collapse">
<div class="panel-body list-group-item">
{% for r in rule.related_pathways %}
<a class="list-group-item" href="{{ r.url }}">{{ r.name }}</a>
<a class="list-group-item" href="{{ r.url }}">{{ r.name|safe }}</a>
{% endfor %}
</div>
</div>

View File

@ -41,7 +41,7 @@
<div id="default-package" class="panel-collapse collapse in">
<div class="panel-body list-group-item">
<li class="list-group-item">
<a href="{{ user.default_package.url }}"> {{ user.default_package.name }}</a>
<a href="{{ user.default_package.url }}"> {{ user.default_package.name|safe }}</a>
</li>
</div>
</div>
@ -58,7 +58,7 @@
<div class="panel-body list-group-item">
{% for g in meta.available_groups %}
<li class="list-group-item">
<a href="{{ g.url }}"> {{ g.name }}</a>
<a href="{{ g.url }}"> {{ g.name|safe }}</a>
</li>
{% endfor %}
</div>
@ -90,7 +90,7 @@
<td colspan="2">
<li class="list-group-item">
<a href="{{user.default_setting.model.url}}">
{{ user.default_setting.model.name }}
{{ user.default_setting.model.name|safe }}
</a>
</li>
</td>
@ -123,7 +123,7 @@
{% for p in user.default_setting.rule_packages.all %}
<li class="list-group-item">
<a href="{{p.url}}">
{{ p.name }}
{{ p.name|safe }}
</a>
</li>
{% endfor %}

View File

@ -18,7 +18,7 @@
</head>
<body>
<p></p>
{{ pathway.name }}
{{ pathway.name|safe }}
<div id="viz">
<svg width="2000" height="2000"> <!-- Sehr großes SVG für Zoom -->
<defs>

View File

@ -11,13 +11,13 @@
<option disabled>Reviewed Packages</option>
{% endif %}
{% for obj in reviewed_objects %}
<option value="{{ obj.url }}" selected>{{ obj.name }}</option>
<option value="{{ obj.url }}" selected>{{ obj.name|safe }}</option>
{% endfor %}
{% if unreviewed_objects %}
<option disabled>Unreviewed Packages</option>
{% endif %}
{% for obj in unreviewed_objects %}
<option value="{{ obj.url }}">{{ obj.name }}</option>
<option value="{{ obj.url }}">{{ obj.name|safe }}</option>
{% endfor %}
</select>
</div>

View File

@ -1,8 +1,10 @@
import os.path
from tempfile import TemporaryDirectory
from django.test import TestCase
from epdb.logic import PackageManager
from epdb.models import Reaction, Compound, User, Rule
from utilities.ml import Dataset
from epdb.models import Reaction, Compound, User, Rule, Package
from utilities.chem import FormatConverter
from utilities.ml import RuleBasedDataset, EnviFormerDataset
class DatasetTest(TestCase):
@ -41,12 +43,108 @@ class DatasetTest(TestCase):
super(DatasetTest, cls).setUpClass()
cls.user = User.objects.get(username="anonymous")
cls.package = PackageManager.create_package(cls.user, "Anon Test Package", "No Desc")
cls.BBD_SUBSET = Package.objects.get(name="Fixtures")
def test_smoke(self):
def test_generate_dataset(self):
"""Test generating dataset does not crash"""
self.generate_rule_dataset()
def test_indexing(self):
"""Test indexing a few different ways to check for crashes"""
ds, reactions, rules = self.generate_rule_dataset()
print(ds[5])
print(ds[2, 5])
print(ds[3:6, 2:8])
print(ds[:2, "structure_id"])
def test_add_rows(self):
"""Test adding one row and adding multiple rows"""
ds, reactions, rules = self.generate_rule_dataset()
ds.add_row(list(ds.df.row(1)))
ds.add_rows([list(ds.df.row(i)) for i in range(5)])
def test_times_triggered(self):
"""Check getting times triggered for a rule id"""
ds, reactions, rules = self.generate_rule_dataset()
print(ds.times_triggered(rules[0].uuid))
def test_block_indices(self):
"""Test the usages of _block_indices"""
ds, reactions, rules = self.generate_rule_dataset()
print(ds.struct_features())
print(ds.triggered())
print(ds.observed())
def test_structure_id(self):
"""Check getting a structure id from row index"""
ds, reactions, rules = self.generate_rule_dataset()
print(ds.structure_id(0))
def test_x(self):
"""Test getting X portion of the dataframe"""
ds, reactions, rules = self.generate_rule_dataset()
print(ds.X().df.head())
def test_trig(self):
"""Test getting the triggered portion of the dataframe"""
ds, reactions, rules = self.generate_rule_dataset()
print(ds.trig().df.head())
def test_y(self):
"""Test getting the Y portion of the dataframe"""
ds, reactions, rules = self.generate_rule_dataset()
print(ds.y().df.head())
def test_classification_dataset(self):
"""Test making the classification dataset"""
ds, reactions, rules = self.generate_rule_dataset()
compounds = [c.default_structure for c in Compound.objects.filter(package=self.BBD_SUBSET)]
class_ds, products = ds.classification_dataset(compounds, rules)
print(class_ds.df.head(5))
print(products[:5])
def test_extra_features(self):
reactions = [r for r in Reaction.objects.filter(package=self.BBD_SUBSET)]
applicable_rules = [r for r in Rule.objects.filter(package=self.BBD_SUBSET)]
ds = RuleBasedDataset.generate_dataset(reactions, applicable_rules, feat_funcs=[FormatConverter.maccs, FormatConverter.morgan])
print(ds.shape)
def test_to_arff(self):
"""Test exporting the arff version of the dataset"""
ds, reactions, rules = self.generate_rule_dataset()
ds.to_arff("dataset_arff_test.arff")
def test_save_load(self):
"""Test saving and loading dataset"""
with TemporaryDirectory() as tmpdir:
ds, reactions, rules = self.generate_rule_dataset()
ds.save(os.path.join(tmpdir, "save_dataset.pkl"))
ds_loaded = RuleBasedDataset.load(os.path.join(tmpdir, "save_dataset.pkl"))
self.assertTrue(ds.df.equals(ds_loaded.df))
def test_dataset_example(self):
"""Test with a concrete example checking dataset size"""
reactions = [r for r in Reaction.objects.filter(package=self.package)]
applicable_rules = [self.rule1]
ds = Dataset.generate_dataset(reactions, applicable_rules)
ds = RuleBasedDataset.generate_dataset(reactions, applicable_rules)
self.assertEqual(len(ds.y()), 1)
self.assertEqual(sum(ds.y()[0]), 1)
self.assertEqual(ds.y().df.item(), 1)
def test_enviformer_dataset(self):
ds, reactions = self.generate_enviformer_dataset()
print(ds.X().head())
print(ds.y().head())
def generate_rule_dataset(self):
"""Generate a RuleBasedDataset from test package data"""
reactions = [r for r in Reaction.objects.filter(package=self.BBD_SUBSET)]
applicable_rules = [r for r in Rule.objects.filter(package=self.BBD_SUBSET)]
ds = RuleBasedDataset.generate_dataset(reactions, applicable_rules)
return ds, reactions, applicable_rules
def generate_enviformer_dataset(self):
reactions = [r for r in Reaction.objects.filter(package=self.BBD_SUBSET)]
ds = EnviFormerDataset.generate_dataset(reactions)
return ds, reactions

View File

@ -42,13 +42,11 @@ class EnviFormerTest(TestCase):
threshold = float(0.5)
data_package_objs = [self.BBD_SUBSET]
eval_packages_objs = [self.BBD_SUBSET]
mod = EnviFormer.create(
self.package, data_package_objs, eval_packages_objs, threshold=threshold
)
mod = EnviFormer.create(self.package, data_package_objs, threshold=threshold)
mod.build_dataset()
mod.build_model()
mod.evaluate_model(True, eval_packages_objs)
mod.evaluate_model(True, eval_packages_objs, n_splits=2)
mod.predict("CCN(CC)C(=O)C1=CC(=CC=C1)C")
@ -57,12 +55,9 @@ class EnviFormerTest(TestCase):
with self.settings(MODEL_DIR=tmpdir):
threshold = float(0.5)
data_package_objs = [self.BBD_SUBSET]
eval_packages_objs = [self.BBD_SUBSET]
mods = []
for _ in range(4):
mod = EnviFormer.create(
self.package, data_package_objs, eval_packages_objs, threshold=threshold
)
mod = EnviFormer.create(self.package, data_package_objs, threshold=threshold)
mod.build_dataset()
mod.build_model()
mods.append(mod)
@ -73,15 +68,11 @@ class EnviFormerTest(TestCase):
# Test pathway prediction
times = [measure_predict(mods[1], self.BBD_SUBSET.pathways[0].pk) for _ in range(5)]
print(
f"First pathway prediction took {times[0]} seconds, subsequent ones took {times[1:]}"
)
print(f"First pathway prediction took {times[0]} seconds, subsequent ones took {times[1:]}")
# Test eviction by performing three prediction with every model, twice.
times = defaultdict(list)
for _ in range(
2
): # Eviction should cause the second iteration here to have to reload the models
for _ in range(2): # Eviction should cause the second iteration here to have to reload the models
for mod in mods:
for _ in range(3):
times[mod.pk].append(measure_predict(mod))

View File

@ -4,7 +4,7 @@ import numpy as np
from django.test import TestCase
from epdb.logic import PackageManager
from epdb.models import User, MLRelativeReasoning, Package
from epdb.models import User, MLRelativeReasoning, Package, RuleBasedRelativeReasoning
class ModelTest(TestCase):
@ -17,7 +17,7 @@ class ModelTest(TestCase):
cls.package = PackageManager.create_package(cls.user, "Anon Test Package", "No Desc")
cls.BBD_SUBSET = Package.objects.get(name="Fixtures")
def test_smoke(self):
def test_mlrr(self):
with TemporaryDirectory() as tmpdir:
with self.settings(MODEL_DIR=tmpdir):
threshold = float(0.5)
@ -35,21 +35,9 @@ class ModelTest(TestCase):
description="Created MLRelativeReasoning in Testcase",
)
# mod = RuleBasedRelativeReasoning.create(
# self.package,
# rule_package_objs,
# data_package_objs,
# eval_packages_objs,
# threshold=threshold,
# min_count=5,
# max_count=0,
# name='ECC - BBD - 0.5',
# description='Created MLRelativeReasoning in Testcase',
# )
mod.build_dataset()
mod.build_model()
mod.evaluate_model(True, eval_packages_objs)
mod.evaluate_model(True, eval_packages_objs, n_splits=2)
results = mod.predict("CCN(CC)C(=O)C1=CC(=CC=C1)C")
@ -70,3 +58,57 @@ class ModelTest(TestCase):
# from pprint import pprint
# pprint(mod.eval_results)
def test_applicability(self):
with TemporaryDirectory() as tmpdir:
with self.settings(MODEL_DIR=tmpdir):
threshold = float(0.5)
rule_package_objs = [self.BBD_SUBSET]
data_package_objs = [self.BBD_SUBSET]
eval_packages_objs = [self.BBD_SUBSET]
mod = MLRelativeReasoning.create(
self.package,
rule_package_objs,
data_package_objs,
threshold=threshold,
name="ECC - BBD - 0.5",
description="Created MLRelativeReasoning in Testcase",
build_app_domain=True, # To test the applicability domain this must be True
app_domain_num_neighbours=5,
app_domain_local_compatibility_threshold=0.5,
app_domain_reliability_threshold=0.5,
)
mod.build_dataset()
mod.build_model()
mod.evaluate_model(True, eval_packages_objs, n_splits=2)
results = mod.predict("CCN(CC)C(=O)C1=CC(=CC=C1)C")
def test_rbrr(self):
with TemporaryDirectory() as tmpdir:
with self.settings(MODEL_DIR=tmpdir):
threshold = float(0.5)
rule_package_objs = [self.BBD_SUBSET]
data_package_objs = [self.BBD_SUBSET]
eval_packages_objs = [self.BBD_SUBSET]
mod = RuleBasedRelativeReasoning.create(
self.package,
rule_package_objs,
data_package_objs,
threshold=threshold,
min_count=5,
max_count=0,
name='ECC - BBD - 0.5',
description='Created MLRelativeReasoning in Testcase',
)
mod.build_dataset()
mod.build_model()
mod.evaluate_model(True, eval_packages_objs, n_splits=2)
results = mod.predict("CCN(CC)C(=O)C1=CC(=CC=C1)C")

View File

@ -29,7 +29,7 @@ class RuleTest(TestCase):
self.assertEqual(r.name, "bt0022-2833")
self.assertEqual(
r.description,
"Dihalomethyl derivative + Halomethyl derivative > 1-Halo-1-methylalcohol derivative + 1-Methylalcohol derivative",
"Dihalomethyl derivative + Halomethyl derivative &gt; 1-Halo-1-methylalcohol derivative + 1-Methylalcohol derivative",
)
def test_smirks_are_trimmed(self):

View File

@ -7,7 +7,7 @@ from typing import List, Optional, Dict, TYPE_CHECKING
from indigo import Indigo, IndigoException, IndigoObject
from indigo.renderer import IndigoRenderer
from rdkit import Chem, rdBase
from rdkit.Chem import MACCSkeys, Descriptors
from rdkit.Chem import MACCSkeys, Descriptors, rdFingerprintGenerator
from rdkit.Chem import rdChemReactions
from rdkit.Chem.Draw import rdMolDraw2D
from rdkit.Chem.MolStandardize import rdMolStandardize
@ -107,6 +107,13 @@ class FormatConverter(object):
bitvec = MACCSkeys.GenMACCSKeys(mol)
return bitvec.ToList()
@staticmethod
def morgan(smiles, radius=3, fpSize=2048):
finger_gen = rdFingerprintGenerator.GetMorganGenerator(radius=radius, fpSize=fpSize)
mol = Chem.MolFromSmiles(smiles)
fp = finger_gen.GetFingerprint(mol)
return fp.ToList()
@staticmethod
def get_functional_groups(smiles: str) -> List[str]:
res = list()
@ -248,6 +255,30 @@ class FormatConverter(object):
except Exception:
return False
@staticmethod
def is_valid_smarts(smarts: str) -> bool:
"""
Checks whether a given string is a valid SMARTS pattern.
Parameters
----------
smarts : str
The SMARTS string to validate.
Returns
-------
bool
True if the SMARTS string is valid, False otherwise.
"""
if not isinstance(smarts, str) or not smarts.strip():
return False
try:
mol = Chem.MolFromSmarts(smarts)
return mol is not None
except Exception:
return False
@staticmethod
def apply(
smiles: str,

View File

@ -5,11 +5,14 @@ import logging
from collections import defaultdict
from datetime import datetime
from pathlib import Path
from typing import List, Dict, Set, Tuple, TYPE_CHECKING
from typing import List, Dict, Set, Tuple, TYPE_CHECKING, Callable
from abc import ABC, abstractmethod
import networkx as nx
import numpy as np
from envipy_plugins import Descriptor
from numpy.random import default_rng
import polars as pl
from sklearn.base import BaseEstimator, ClassifierMixin
from sklearn.decomposition import PCA
from sklearn.dummy import DummyClassifier
@ -26,70 +29,281 @@ if TYPE_CHECKING:
from epdb.models import Rule, CompoundStructure, Reaction
class Dataset:
def __init__(
self, columns: List[str], num_labels: int, data: List[List[str | int | float]] = None
):
self.columns: List[str] = columns
self.num_labels: int = num_labels
if data is None:
self.data: List[List[str | int | float]] = list()
class Dataset(ABC):
def __init__(self, columns: List[str] = None, data: List[List[str | int | float]] | pl.DataFrame = None):
if isinstance(data, pl.DataFrame): # Allows for re-creation of self in cases like indexing with __getitem__
self.df = data
else:
self.data = data
# Build either an empty dataframe with columns or fill it with list of list data
if data is not None and len(columns) != len(data[0]):
raise ValueError(f"Header and Data are not aligned {len(columns)} columns vs. {len(data[0])} columns")
if columns is None:
raise ValueError("Columns can't be None if data is not already a DataFrame")
self.df = pl.DataFrame(data=data, schema=columns, orient="row", infer_schema_length=None)
self.num_features: int = len(columns) - self.num_labels
self._struct_features: Tuple[int, int] = self._block_indices("feature_")
self._triggered: Tuple[int, int] = self._block_indices("trig_")
self._observed: Tuple[int, int] = self._block_indices("obs_")
def add_rows(self, rows: List[List[str | int | float]]):
"""Add rows to the dataset. Extends the polars dataframe stored in self"""
if len(self.columns) != len(rows[0]):
raise ValueError(f"Header and Data are not aligned {len(self.columns)} columns vs. {len(rows[0])} columns")
new_rows = pl.DataFrame(data=rows, schema=self.columns, orient="row", infer_schema_length=None)
self.df.extend(new_rows)
def _block_indices(self, prefix) -> Tuple[int, int]:
def add_row(self, row: List[str | int | float]):
"""See add_rows"""
self.add_rows([row])
def block_indices(self, prefix) -> List[int]:
"""Find the indexes in column labels that has the prefix"""
indices: List[int] = []
for i, feature in enumerate(self.columns):
if feature.startswith(prefix):
indices.append(i)
return indices
return min(indices), max(indices)
@property
def columns(self) -> List[str]:
"""Use the polars dataframe columns"""
return self.df.columns
def structure_id(self):
return self.data[0][0]
@property
def shape(self):
return self.df.shape
def add_row(self, row: List[str | int | float]):
if len(self.columns) != len(row):
raise ValueError(f"Header and Data are not aligned {len(self.columns)} vs. {len(row)}")
self.data.append(row)
@abstractmethod
def X(self, **kwargs):
pass
def times_triggered(self, rule_uuid) -> int:
idx = self.columns.index(f"trig_{rule_uuid}")
@abstractmethod
def y(self, **kwargs):
pass
times_triggered = 0
for row in self.data:
if row[idx] == 1:
times_triggered += 1
return times_triggered
def struct_features(self) -> Tuple[int, int]:
return self._struct_features
def triggered(self) -> Tuple[int, int]:
return self._triggered
def observed(self) -> Tuple[int, int]:
return self._observed
def at(self, position: int) -> Dataset:
return Dataset(self.columns, self.num_labels, [self.data[position]])
def limit(self, limit: int) -> Dataset:
return Dataset(self.columns, self.num_labels, self.data[:limit])
@staticmethod
@abstractmethod
def generate_dataset(reactions, *args, **kwargs):
pass
def __iter__(self):
return (self.at(i) for i, _ in enumerate(self.data))
"""Use polars iter_rows for iterating over the dataset"""
return self.df.iter_rows()
def __getitem__(self, item):
"""Item is passed to polars allowing for advanced indexing.
See https://docs.pola.rs/api/python/stable/reference/dataframe/api/polars.DataFrame.__getitem__.html#polars.DataFrame.__getitem__"""
res = self.df[item]
if isinstance(res, pl.DataFrame): # If we get a dataframe back from indexing make new self with res dataframe
return self.__class__(data=res)
else: # If we don't get a dataframe back (likely base type, int, str, float etc.) return the item
return res
def save(self, path: "Path | str"):
import pickle
with open(path, "wb") as fh:
pickle.dump(self, fh)
@staticmethod
def load(path: "str | Path") -> "Dataset":
import pickle
return pickle.load(open(path, "rb"))
def to_numpy(self):
return self.df.to_numpy()
def __repr__(self):
return (
f"<{self.__class__.__name__} #rows={len(self.df)} #cols={len(self.columns)}>"
)
def __len__(self):
return len(self.df)
def iter_rows(self, named=False):
return self.df.iter_rows(named=named)
def filter(self, *predicates, **constraints):
return self.__class__(data=self.df.filter(*predicates, **constraints))
def select(self, *exprs, **named_exprs):
return self.__class__(data=self.df.select(*exprs, **named_exprs))
def with_columns(self, *exprs, **name_exprs):
return self.__class__(data=self.df.with_columns(*exprs, **name_exprs))
def sort(self, by, *more_by, descending=False, nulls_last=False, multithreaded=True, maintain_order=False):
return self.__class__(data=self.df.sort(by, *more_by, descending=descending, nulls_last=nulls_last,
multithreaded=multithreaded, maintain_order=maintain_order))
def item(self, row=None, column=None):
return self.df.item(row, column)
def fill_nan(self, value):
return self.__class__(data=self.df.fill_nan(value))
@property
def height(self):
return self.df.height
class RuleBasedDataset(Dataset):
def __init__(self, num_labels=None, columns=None, data=None):
super().__init__(columns, data)
# Calculating num_labels allows functions like getitem to be in the base Dataset as it unifies the init.
self.num_labels: int = num_labels if num_labels else sum([1 for c in self.columns if "obs_" in c])
# Pre-calculate the ids of columns for features/labels, useful later in X and y
self._struct_features: List[int] = self.block_indices("feature_")
self._triggered: List[int] = self.block_indices("trig_")
self._observed: List[int] = self.block_indices("obs_")
self.feature_cols: List[int] = self._struct_features + self._triggered
self.num_features: int = len(self.feature_cols)
self.has_probs = False
def times_triggered(self, rule_uuid) -> int:
"""Count how many times a rule is triggered by the number of rows with one in the rules trig column"""
return self.df.filter(pl.col(f"trig_{rule_uuid}") == 1).height
def struct_features(self) -> List[int]:
return self._struct_features
def triggered(self) -> List[int]:
return self._triggered
def observed(self) -> List[int]:
return self._observed
def structure_id(self, index: int):
"""Get the UUID of a compound"""
return self.item(index, "structure_id")
def X(self, exclude_id_col=True, na_replacement=0):
"""Get all the feature and trig columns"""
_col_ids = self.feature_cols
if not exclude_id_col:
_col_ids = [0] + _col_ids
res = self[:, _col_ids]
if na_replacement is not None:
res.df = res.df.fill_null(na_replacement)
return res
def trig(self, na_replacement=0):
"""Get all the trig columns"""
res = self[:, self._triggered]
if na_replacement is not None:
res.df = res.df.fill_null(na_replacement)
return res
def y(self, na_replacement=0):
"""Get all the obs columns"""
res = self[:, self._observed]
if na_replacement is not None:
res.df = res.df.fill_null(na_replacement)
return res
@staticmethod
def generate_dataset(reactions, applicable_rules, educts_only=True, feat_funcs: List["Callable | Descriptor"]=None):
if feat_funcs is None:
feat_funcs = [FormatConverter.maccs]
_structures = set() # Get all the structures
for r in reactions:
_structures.update(r.educts.all())
if not educts_only:
_structures.update(r.products.all())
compounds = sorted(_structures, key=lambda x: x.url)
triggered: Dict[str, Set[str]] = defaultdict(set)
observed: Set[str] = set()
# Apply rules on collected compounds and store tps
for i, comp in enumerate(compounds):
logger.debug(f"{i + 1}/{len(compounds)}...")
for rule in applicable_rules:
product_sets = rule.apply(comp.smiles)
if len(product_sets) == 0:
continue
key = f"{rule.uuid} + {comp.uuid}"
if key in triggered:
logger.info(f"{key} already present. Duplicate reaction?")
for prod_set in product_sets:
for smi in prod_set:
try:
smi = FormatConverter.standardize(smi, remove_stereo=True)
except Exception:
logger.debug(f"Standardizing SMILES failed for {smi}")
triggered[key].add(smi)
for i, r in enumerate(reactions):
logger.debug(f"{i + 1}/{len(reactions)}...")
if len(r.educts.all()) != 1:
logger.debug(f"Skipping {r.url} as it has {len(r.educts.all())} substrates!")
continue
for comp in r.educts.all():
for rule in applicable_rules:
key = f"{rule.uuid} + {comp.uuid}"
if key not in triggered:
continue
# standardize products from reactions for comparison
standardized_products = []
for cs in r.products.all():
smi = cs.smiles
try:
smi = FormatConverter.standardize(smi, remove_stereo=True)
except Exception as e:
logger.debug(f"Standardizing SMILES failed for {smi}")
standardized_products.append(smi)
if len(set(standardized_products).difference(triggered[key])) == 0:
observed.add(key)
feat_columns = []
for feat_func in feat_funcs:
if isinstance(feat_func, Descriptor):
feats = feat_func.get_molecule_descriptors(compounds[0].smiles)
else:
feats = feat_func(compounds[0].smiles)
start_i = len(feat_columns)
feat_columns.extend([f"feature_{start_i + i}" for i, _ in enumerate(feats)])
ds_columns = (["structure_id"] +
feat_columns +
[f"trig_{r.uuid}" for r in applicable_rules] +
[f"obs_{r.uuid}" for r in applicable_rules])
rows = []
for i, comp in enumerate(compounds):
# Features
feats = []
for feat_func in feat_funcs:
if isinstance(feat_func, Descriptor):
feat = feat_func.get_molecule_descriptors(comp.smiles)
else:
feat = feat_func(comp.smiles)
feats.extend(feat)
trig = []
obs = []
for rule in applicable_rules:
key = f"{rule.uuid} + {comp.uuid}"
# Check triggered
if key in triggered:
trig.append(1)
else:
trig.append(0)
# Check obs
if key in observed:
obs.append(1)
elif key not in triggered:
obs.append(None)
else:
obs.append(0)
rows.append([str(comp.uuid)] + feats + trig + obs)
ds = RuleBasedDataset(len(applicable_rules), ds_columns, data=rows)
return ds
def classification_dataset(
self, structures: List[str | "CompoundStructure"], applicable_rules: List["Rule"]
) -> Tuple[Dataset, List[List[PredictionResult]]]:
) -> Tuple[RuleBasedDataset, List[List[PredictionResult]]]:
classify_data = []
classify_products = []
for struct in structures:
@ -113,186 +327,18 @@ class Dataset:
else:
trig.append(0)
prods.append([])
classify_data.append([struct_id] + features + trig + ([-1] * len(trig)))
new_row = [struct_id] + features + trig + ([-1] * len(trig))
if self.has_probs:
new_row += [-1] * len(trig)
classify_data.append(new_row)
classify_products.append(prods)
ds = RuleBasedDataset(len(applicable_rules), self.columns, data=classify_data)
return ds, classify_products
return Dataset(
columns=self.columns, num_labels=self.num_labels, data=classify_data
), classify_products
@staticmethod
def generate_dataset(
reactions: List["Reaction"], applicable_rules: List["Rule"], educts_only: bool = True
) -> Dataset:
_structures = set()
for r in reactions:
for e in r.educts.all():
_structures.add(e)
if not educts_only:
for e in r.products:
_structures.add(e)
compounds = sorted(_structures, key=lambda x: x.url)
triggered: Dict[str, Set[str]] = defaultdict(set)
observed: Set[str] = set()
# Apply rules on collected compounds and store tps
for i, comp in enumerate(compounds):
logger.debug(f"{i + 1}/{len(compounds)}...")
for rule in applicable_rules:
product_sets = rule.apply(comp.smiles)
if len(product_sets) == 0:
continue
key = f"{rule.uuid} + {comp.uuid}"
if key in triggered:
logger.info(f"{key} already present. Duplicate reaction?")
for prod_set in product_sets:
for smi in prod_set:
try:
smi = FormatConverter.standardize(smi, remove_stereo=True)
except Exception:
# :shrug:
logger.debug(f"Standardizing SMILES failed for {smi}")
pass
triggered[key].add(smi)
for i, r in enumerate(reactions):
logger.debug(f"{i + 1}/{len(reactions)}...")
if len(r.educts.all()) != 1:
logger.debug(f"Skipping {r.url} as it has {len(r.educts.all())} substrates!")
continue
for comp in r.educts.all():
for rule in applicable_rules:
key = f"{rule.uuid} + {comp.uuid}"
if key not in triggered:
continue
# standardize products from reactions for comparison
standardized_products = []
for cs in r.products.all():
smi = cs.smiles
try:
smi = FormatConverter.standardize(smi, remove_stereo=True)
except Exception as e:
# :shrug:
logger.debug(f"Standardizing SMILES failed for {smi}")
pass
standardized_products.append(smi)
if len(set(standardized_products).difference(triggered[key])) == 0:
observed.add(key)
else:
pass
ds = None
for i, comp in enumerate(compounds):
# Features
feat = FormatConverter.maccs(comp.smiles)
trig = []
obs = []
for rule in applicable_rules:
key = f"{rule.uuid} + {comp.uuid}"
# Check triggered
if key in triggered:
trig.append(1)
else:
trig.append(0)
# Check obs
if key in observed:
obs.append(1)
elif key not in triggered:
obs.append(None)
else:
obs.append(0)
if ds is None:
header = (
["structure_id"]
+ [f"feature_{i}" for i, _ in enumerate(feat)]
+ [f"trig_{r.uuid}" for r in applicable_rules]
+ [f"obs_{r.uuid}" for r in applicable_rules]
)
ds = Dataset(header, len(applicable_rules))
ds.add_row([str(comp.uuid)] + feat + trig + obs)
return ds
def X(self, exclude_id_col=True, na_replacement=0):
res = self.__getitem__(
(slice(None), slice(1 if exclude_id_col else 0, len(self.columns) - self.num_labels))
)
if na_replacement is not None:
res = [[x if x is not None else na_replacement for x in row] for row in res]
return res
def trig(self, na_replacement=0):
res = self.__getitem__((slice(None), slice(self._triggered[0], self._triggered[1])))
if na_replacement is not None:
res = [[x if x is not None else na_replacement for x in row] for row in res]
return res
def y(self, na_replacement=0):
res = self.__getitem__((slice(None), slice(len(self.columns) - self.num_labels, None)))
if na_replacement is not None:
res = [[x if x is not None else na_replacement for x in row] for row in res]
return res
def __getitem__(self, key):
if not isinstance(key, tuple):
raise TypeError("Dataset must be indexed with dataset[rows, columns]")
row_key, col_key = key
# Normalize rows
if isinstance(row_key, int):
rows = [self.data[row_key]]
else:
rows = self.data[row_key]
# Normalize columns
if isinstance(col_key, int):
res = [row[col_key] for row in rows]
else:
res = [
[row[i] for i in range(*col_key.indices(len(row)))]
if isinstance(col_key, slice)
else [row[i] for i in col_key]
for row in rows
]
return res
def save(self, path: "Path"):
import pickle
with open(path, "wb") as fh:
pickle.dump(self, fh)
@staticmethod
def load(path: "Path") -> "Dataset":
import pickle
return pickle.load(open(path, "rb"))
def add_probs(self, probs):
col_names = [f"prob_{self.columns[r_id].split('_')[-1]}" for r_id in self._observed]
self.df = self.df.with_columns(*[pl.Series(name, probs[:, j]) for j, name in enumerate(col_names)])
self.has_probs = True
def to_arff(self, path: "Path"):
arff = f"@relation 'enviPy-dataset: -C {self.num_labels}'\n"
@ -304,7 +350,7 @@ class Dataset:
arff += f"@attribute {c} {{0,1}}\n"
arff += "\n@data\n"
for d in self.data:
for d in self:
ys = ",".join([str(v if v is not None else "?") for v in d[-self.num_labels :]])
xs = ",".join([str(v if v is not None else "?") for v in d[: self.num_features]])
arff += f"{ys},{xs}\n"
@ -313,10 +359,40 @@ class Dataset:
fh.write(arff)
fh.flush()
def __repr__(self):
return (
f"<Dataset #rows={len(self.data)} #cols={len(self.columns)} #labels={self.num_labels}>"
class EnviFormerDataset(Dataset):
def __init__(self, columns=None, data=None):
super().__init__(columns, data)
def X(self):
"""Return the educts"""
return self["educts"]
def y(self):
"""Return the products"""
return self["products"]
@staticmethod
def generate_dataset(reactions, *args, **kwargs):
# Standardise reactions for the training data
stereo = kwargs.get("stereo", False)
rows = []
for reaction in reactions:
e = ".".join(
[
FormatConverter.standardize(smile.smiles, remove_stereo=not stereo)
for smile in reaction.educts.all()
]
)
p = ".".join(
[
FormatConverter.standardize(smile.smiles, remove_stereo=not stereo)
for smile in reaction.products.all()
]
)
rows.append([e, p])
ds = EnviFormerDataset(["educts", "products"], rows)
return ds
class SparseLabelECC(BaseEstimator, ClassifierMixin):
@ -498,7 +574,7 @@ class EnsembleClassifierChain:
self.classifiers = []
if self.num_labels is None:
self.num_labels = len(Y[0])
self.num_labels = Y.shape[1]
for p in range(self.num_chains):
logger.debug(f"{datetime.now()} fitting {p + 1}/{self.num_chains}")
@ -529,7 +605,7 @@ class RelativeReasoning:
def fit(self, X, Y):
n_instances = len(Y)
n_attributes = len(Y[0])
n_attributes = Y.shape[1]
for i in range(n_attributes):
for j in range(n_attributes):
@ -541,8 +617,8 @@ class RelativeReasoning:
countboth = 0
for k in range(n_instances):
vi = Y[k][i]
vj = Y[k][j]
vi = Y[k, i]
vj = Y[k, j]
if vi is None or vj is None:
continue
@ -598,7 +674,7 @@ class ApplicabilityDomainPCA(PCA):
self.min_vals = None
self.max_vals = None
def build(self, train_dataset: "Dataset"):
def build(self, train_dataset: "RuleBasedDataset"):
# transform
X_scaled = self.scaler.fit_transform(train_dataset.X())
# fit pca
@ -612,7 +688,7 @@ class ApplicabilityDomainPCA(PCA):
instances_pca = self.transform(instances_scaled)
return instances_pca
def is_applicable(self, classify_instances: "Dataset"):
def is_applicable(self, classify_instances: "RuleBasedDataset"):
instances_pca = self.__transform(classify_instances.X())
is_applicable = []

213
uv.lock generated
View File

@ -1,6 +1,10 @@
version = 1
revision = 3
revision = 2
requires-python = ">=3.12"
resolution-markers = [
"sys_platform == 'linux' or sys_platform == 'win32'",
"sys_platform != 'linux' and sys_platform != 'win32'",
]
[[package]]
name = "aiohappyeyeballs"
@ -176,6 +180,19 @@ wheels = [
{ url = "https://files.pythonhosted.org/packages/c9/af/0dcccc7fdcdf170f9a1585e5e96b6fb0ba1749ef6be8c89a6202284759bd/celery-5.5.3-py3-none-any.whl", hash = "sha256:0b5761a07057acee94694464ca482416b959568904c9dfa41ce8413a7d65d525", size = 438775, upload-time = "2025-06-01T11:08:09.94Z" },
]
[[package]]
name = "celery-stubs"
version = "0.1.3"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "mypy" },
{ name = "typing-extensions" },
]
sdist = { url = "https://files.pythonhosted.org/packages/98/14/b853ada8706a3a301396566b6dd405d1cbb24bff756236a12a01dbe766a4/celery-stubs-0.1.3.tar.gz", hash = "sha256:0fb5345820f8a2bd14e6ffcbef2d10181e12e40f8369f551d7acc99d8d514919", size = 46583, upload-time = "2023-02-10T02:20:11.837Z" }
wheels = [
{ url = "https://files.pythonhosted.org/packages/1c/7a/4ab2347d13f1f59d10a7337feb9beb002664119f286036785284c6bec150/celery_stubs-0.1.3-py3-none-any.whl", hash = "sha256:dfb9ad27614a8af028b2055bb4a4ae99ca5e9a8d871428a506646d62153218d7", size = 89085, upload-time = "2023-02-10T02:20:09.409Z" },
]
[[package]]
name = "certifi"
version = "2025.10.5"
@ -525,13 +542,14 @@ wheels = [
[[package]]
name = "enviformer"
version = "0.1.0"
source = { git = "ssh://git@git.envipath.com/enviPath/enviformer.git?rev=v0.1.2#3f28f60cfa1df814cf7559303b5130933efa40ae" }
source = { git = "ssh://git@git.envipath.com/enviPath/enviformer.git?rev=v0.1.4#7094be5767748fd63d4a84a5d71f06cf02ba07f3" }
dependencies = [
{ name = "joblib" },
{ name = "lightning" },
{ name = "pytorch-lightning" },
{ name = "scikit-learn" },
{ name = "torch" },
{ name = "torch", version = "2.8.0", source = { registry = "https://pypi.org/simple" }, marker = "sys_platform != 'linux' and sys_platform != 'win32'" },
{ name = "torch", version = "2.8.0+cu128", source = { registry = "https://download.pytorch.org/whl/cu128" }, marker = "sys_platform == 'linux' or sys_platform == 'win32'" },
]
[[package]]
@ -546,7 +564,6 @@ dependencies = [
{ name = "django-ninja" },
{ name = "django-oauth-toolkit" },
{ name = "django-polymorphic" },
{ name = "django-stubs" },
{ name = "enviformer" },
{ name = "envipy-additional-information" },
{ name = "envipy-ambit" },
@ -554,6 +571,8 @@ dependencies = [
{ name = "epam-indigo" },
{ name = "gunicorn" },
{ name = "networkx" },
{ name = "nh3" },
{ name = "polars" },
{ name = "psycopg2-binary" },
{ name = "python-dotenv" },
{ name = "rdkit" },
@ -566,6 +585,8 @@ dependencies = [
[package.optional-dependencies]
dev = [
{ name = "celery-stubs" },
{ name = "django-stubs" },
{ name = "poethepoet" },
{ name = "pre-commit" },
{ name = "ruff" },
@ -577,22 +598,25 @@ ms-login = [
[package.metadata]
requires-dist = [
{ name = "celery", specifier = ">=5.5.2" },
{ name = "celery-stubs", marker = "extra == 'dev'", specifier = "==0.1.3" },
{ name = "django", specifier = ">=5.2.1" },
{ name = "django-extensions", specifier = ">=4.1" },
{ name = "django-model-utils", specifier = ">=5.0.0" },
{ name = "django-ninja", specifier = ">=1.4.1" },
{ name = "django-oauth-toolkit", specifier = ">=3.0.1" },
{ name = "django-polymorphic", specifier = ">=4.1.0" },
{ name = "django-stubs", specifier = ">=5.2.4" },
{ name = "enviformer", git = "ssh://git@git.envipath.com/enviPath/enviformer.git?rev=v0.1.2" },
{ name = "envipy-additional-information", git = "ssh://git@git.envipath.com/enviPath/enviPy-additional-information.git?rev=v0.1.4" },
{ name = "django-stubs", marker = "extra == 'dev'", specifier = ">=5.2.4" },
{ name = "enviformer", git = "ssh://git@git.envipath.com/enviPath/enviformer.git?rev=v0.1.4" },
{ name = "envipy-additional-information", git = "ssh://git@git.envipath.com/enviPath/enviPy-additional-information.git?rev=v0.1.7" },
{ name = "envipy-ambit", git = "ssh://git@git.envipath.com/enviPath/enviPy-ambit.git" },
{ name = "envipy-plugins", git = "ssh://git@git.envipath.com/enviPath/enviPy-plugins.git?rev=v0.1.0" },
{ name = "epam-indigo", specifier = ">=1.30.1" },
{ name = "gunicorn", specifier = ">=23.0.0" },
{ name = "msal", marker = "extra == 'ms-login'", specifier = ">=1.33.0" },
{ name = "networkx", specifier = ">=3.4.2" },
{ name = "nh3", specifier = "==0.3.2" },
{ name = "poethepoet", marker = "extra == 'dev'", specifier = ">=0.37.0" },
{ name = "polars", specifier = "==1.35.1" },
{ name = "pre-commit", marker = "extra == 'dev'", specifier = ">=4.3.0" },
{ name = "psycopg2-binary", specifier = ">=2.9.10" },
{ name = "python-dotenv", specifier = ">=1.1.0" },
@ -608,8 +632,8 @@ provides-extras = ["ms-login", "dev"]
[[package]]
name = "envipy-additional-information"
version = "0.1.0"
source = { git = "ssh://git@git.envipath.com/enviPath/enviPy-additional-information.git?rev=v0.1.4#4da604090bf7cf1f3f552d69485472dbc623030a" }
version = "0.1.7"
source = { git = "ssh://git@git.envipath.com/enviPath/enviPy-additional-information.git?rev=v0.1.7#d02a5d5e6a931e6565ea86127813acf7e4b33a30" }
dependencies = [
{ name = "pydantic" },
]
@ -865,7 +889,8 @@ dependencies = [
{ name = "packaging" },
{ name = "pytorch-lightning" },
{ name = "pyyaml" },
{ name = "torch" },
{ name = "torch", version = "2.8.0", source = { registry = "https://pypi.org/simple" }, marker = "sys_platform != 'linux' and sys_platform != 'win32'" },
{ name = "torch", version = "2.8.0+cu128", source = { registry = "https://download.pytorch.org/whl/cu128" }, marker = "sys_platform == 'linux' or sys_platform == 'win32'" },
{ name = "torchmetrics" },
{ name = "tqdm" },
{ name = "typing-extensions" },
@ -1074,6 +1099,47 @@ wheels = [
{ url = "https://files.pythonhosted.org/packages/b7/da/7d22601b625e241d4f23ef1ebff8acfc60da633c9e7e7922e24d10f592b3/multidict-6.7.0-py3-none-any.whl", hash = "sha256:394fc5c42a333c9ffc3e421a4c85e08580d990e08b99f6bf35b4132114c5dcb3", size = 12317, upload-time = "2025-10-06T14:52:29.272Z" },
]
[[package]]
name = "mypy"
version = "1.18.2"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "mypy-extensions" },
{ name = "pathspec" },
{ name = "typing-extensions" },
]
sdist = { url = "https://files.pythonhosted.org/packages/c0/77/8f0d0001ffad290cef2f7f216f96c814866248a0b92a722365ed54648e7e/mypy-1.18.2.tar.gz", hash = "sha256:06a398102a5f203d7477b2923dda3634c36727fa5c237d8f859ef90c42a9924b", size = 3448846, upload-time = "2025-09-19T00:11:10.519Z" }
wheels = [
{ url = "https://files.pythonhosted.org/packages/07/06/dfdd2bc60c66611dd8335f463818514733bc763e4760dee289dcc33df709/mypy-1.18.2-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:33eca32dd124b29400c31d7cf784e795b050ace0e1f91b8dc035672725617e34", size = 12908273, upload-time = "2025-09-19T00:10:58.321Z" },
{ url = "https://files.pythonhosted.org/packages/81/14/6a9de6d13a122d5608e1a04130724caf9170333ac5a924e10f670687d3eb/mypy-1.18.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:a3c47adf30d65e89b2dcd2fa32f3aeb5e94ca970d2c15fcb25e297871c8e4764", size = 11920910, upload-time = "2025-09-19T00:10:20.043Z" },
{ url = "https://files.pythonhosted.org/packages/5f/a9/b29de53e42f18e8cc547e38daa9dfa132ffdc64f7250e353f5c8cdd44bee/mypy-1.18.2-cp312-cp312-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:5d6c838e831a062f5f29d11c9057c6009f60cb294fea33a98422688181fe2893", size = 12465585, upload-time = "2025-09-19T00:10:33.005Z" },
{ url = "https://files.pythonhosted.org/packages/77/ae/6c3d2c7c61ff21f2bee938c917616c92ebf852f015fb55917fd6e2811db2/mypy-1.18.2-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:01199871b6110a2ce984bde85acd481232d17413868c9807e95c1b0739a58914", size = 13348562, upload-time = "2025-09-19T00:10:11.51Z" },
{ url = "https://files.pythonhosted.org/packages/4d/31/aec68ab3b4aebdf8f36d191b0685d99faa899ab990753ca0fee60fb99511/mypy-1.18.2-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:a2afc0fa0b0e91b4599ddfe0f91e2c26c2b5a5ab263737e998d6817874c5f7c8", size = 13533296, upload-time = "2025-09-19T00:10:06.568Z" },
{ url = "https://files.pythonhosted.org/packages/9f/83/abcb3ad9478fca3ebeb6a5358bb0b22c95ea42b43b7789c7fb1297ca44f4/mypy-1.18.2-cp312-cp312-win_amd64.whl", hash = "sha256:d8068d0afe682c7c4897c0f7ce84ea77f6de953262b12d07038f4d296d547074", size = 9828828, upload-time = "2025-09-19T00:10:28.203Z" },
{ url = "https://files.pythonhosted.org/packages/5f/04/7f462e6fbba87a72bc8097b93f6842499c428a6ff0c81dd46948d175afe8/mypy-1.18.2-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:07b8b0f580ca6d289e69209ec9d3911b4a26e5abfde32228a288eb79df129fcc", size = 12898728, upload-time = "2025-09-19T00:10:01.33Z" },
{ url = "https://files.pythonhosted.org/packages/99/5b/61ed4efb64f1871b41fd0b82d29a64640f3516078f6c7905b68ab1ad8b13/mypy-1.18.2-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:ed4482847168439651d3feee5833ccedbf6657e964572706a2adb1f7fa4dfe2e", size = 11910758, upload-time = "2025-09-19T00:10:42.607Z" },
{ url = "https://files.pythonhosted.org/packages/3c/46/d297d4b683cc89a6e4108c4250a6a6b717f5fa96e1a30a7944a6da44da35/mypy-1.18.2-cp313-cp313-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:c3ad2afadd1e9fea5cf99a45a822346971ede8685cc581ed9cd4d42eaf940986", size = 12475342, upload-time = "2025-09-19T00:11:00.371Z" },
{ url = "https://files.pythonhosted.org/packages/83/45/4798f4d00df13eae3bfdf726c9244bcb495ab5bd588c0eed93a2f2dd67f3/mypy-1.18.2-cp313-cp313-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:a431a6f1ef14cf8c144c6b14793a23ec4eae3db28277c358136e79d7d062f62d", size = 13338709, upload-time = "2025-09-19T00:11:03.358Z" },
{ url = "https://files.pythonhosted.org/packages/d7/09/479f7358d9625172521a87a9271ddd2441e1dab16a09708f056e97007207/mypy-1.18.2-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:7ab28cc197f1dd77a67e1c6f35cd1f8e8b73ed2217e4fc005f9e6a504e46e7ba", size = 13529806, upload-time = "2025-09-19T00:10:26.073Z" },
{ url = "https://files.pythonhosted.org/packages/71/cf/ac0f2c7e9d0ea3c75cd99dff7aec1c9df4a1376537cb90e4c882267ee7e9/mypy-1.18.2-cp313-cp313-win_amd64.whl", hash = "sha256:0e2785a84b34a72ba55fb5daf079a1003a34c05b22238da94fcae2bbe46f3544", size = 9833262, upload-time = "2025-09-19T00:10:40.035Z" },
{ url = "https://files.pythonhosted.org/packages/5a/0c/7d5300883da16f0063ae53996358758b2a2df2a09c72a5061fa79a1f5006/mypy-1.18.2-cp314-cp314-macosx_10_13_x86_64.whl", hash = "sha256:62f0e1e988ad41c2a110edde6c398383a889d95b36b3e60bcf155f5164c4fdce", size = 12893775, upload-time = "2025-09-19T00:10:03.814Z" },
{ url = "https://files.pythonhosted.org/packages/50/df/2cffbf25737bdb236f60c973edf62e3e7b4ee1c25b6878629e88e2cde967/mypy-1.18.2-cp314-cp314-macosx_11_0_arm64.whl", hash = "sha256:8795a039bab805ff0c1dfdb8cd3344642c2b99b8e439d057aba30850b8d3423d", size = 11936852, upload-time = "2025-09-19T00:10:51.631Z" },
{ url = "https://files.pythonhosted.org/packages/be/50/34059de13dd269227fb4a03be1faee6e2a4b04a2051c82ac0a0b5a773c9a/mypy-1.18.2-cp314-cp314-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:6ca1e64b24a700ab5ce10133f7ccd956a04715463d30498e64ea8715236f9c9c", size = 12480242, upload-time = "2025-09-19T00:11:07.955Z" },
{ url = "https://files.pythonhosted.org/packages/5b/11/040983fad5132d85914c874a2836252bbc57832065548885b5bb5b0d4359/mypy-1.18.2-cp314-cp314-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:d924eef3795cc89fecf6bedc6ed32b33ac13e8321344f6ddbf8ee89f706c05cb", size = 13326683, upload-time = "2025-09-19T00:09:55.572Z" },
{ url = "https://files.pythonhosted.org/packages/e9/ba/89b2901dd77414dd7a8c8729985832a5735053be15b744c18e4586e506ef/mypy-1.18.2-cp314-cp314-musllinux_1_2_x86_64.whl", hash = "sha256:20c02215a080e3a2be3aa50506c67242df1c151eaba0dcbc1e4e557922a26075", size = 13514749, upload-time = "2025-09-19T00:10:44.827Z" },
{ url = "https://files.pythonhosted.org/packages/25/bc/cc98767cffd6b2928ba680f3e5bc969c4152bf7c2d83f92f5a504b92b0eb/mypy-1.18.2-cp314-cp314-win_amd64.whl", hash = "sha256:749b5f83198f1ca64345603118a6f01a4e99ad4bf9d103ddc5a3200cc4614adf", size = 9982959, upload-time = "2025-09-19T00:10:37.344Z" },
{ url = "https://files.pythonhosted.org/packages/87/e3/be76d87158ebafa0309946c4a73831974d4d6ab4f4ef40c3b53a385a66fd/mypy-1.18.2-py3-none-any.whl", hash = "sha256:22a1748707dd62b58d2ae53562ffc4d7f8bcc727e8ac7cbc69c053ddc874d47e", size = 2352367, upload-time = "2025-09-19T00:10:15.489Z" },
]
[[package]]
name = "mypy-extensions"
version = "1.1.0"
source = { registry = "https://pypi.org/simple" }
sdist = { url = "https://files.pythonhosted.org/packages/a2/6e/371856a3fb9d31ca8dac321cda606860fa4548858c0cc45d9d1d4ca2628b/mypy_extensions-1.1.0.tar.gz", hash = "sha256:52e68efc3284861e772bbcd66823fde5ae21fd2fdb51c62a211403730b916558", size = 6343, upload-time = "2025-04-22T14:54:24.164Z" }
wheels = [
{ url = "https://files.pythonhosted.org/packages/79/7b/2c79738432f5c924bef5071f933bcc9efd0473bac3b4aa584a6f7c1c8df8/mypy_extensions-1.1.0-py3-none-any.whl", hash = "sha256:1be4cccdb0f2482337c4743e60421de3a356cd97508abadd57d47403e94f5505", size = 4963, upload-time = "2025-04-22T14:54:22.983Z" },
]
[[package]]
name = "networkx"
version = "3.5"
@ -1083,6 +1149,39 @@ wheels = [
{ url = "https://files.pythonhosted.org/packages/eb/8d/776adee7bbf76365fdd7f2552710282c79a4ead5d2a46408c9043a2b70ba/networkx-3.5-py3-none-any.whl", hash = "sha256:0030d386a9a06dee3565298b4a734b68589749a544acbb6c412dc9e2489ec6ec", size = 2034406, upload-time = "2025-05-29T11:35:04.961Z" },
]
[[package]]
name = "nh3"
version = "0.3.2"
source = { registry = "https://pypi.org/simple" }
sdist = { url = "https://files.pythonhosted.org/packages/ca/a5/34c26015d3a434409f4d2a1cd8821a06c05238703f49283ffeb937bef093/nh3-0.3.2.tar.gz", hash = "sha256:f394759a06df8b685a4ebfb1874fb67a9cbfd58c64fc5ed587a663c0e63ec376", size = 19288, upload-time = "2025-10-30T11:17:45.948Z" }
wheels = [
{ url = "https://files.pythonhosted.org/packages/5b/01/a1eda067c0ba823e5e2bb033864ae4854549e49fb6f3407d2da949106bfb/nh3-0.3.2-cp314-cp314t-macosx_10_12_x86_64.macosx_11_0_arm64.macosx_10_12_universal2.whl", hash = "sha256:d18957a90806d943d141cc5e4a0fefa1d77cf0d7a156878bf9a66eed52c9cc7d", size = 1419839, upload-time = "2025-10-30T11:17:09.956Z" },
{ url = "https://files.pythonhosted.org/packages/30/57/07826ff65d59e7e9cc789ef1dc405f660cabd7458a1864ab58aefa17411b/nh3-0.3.2-cp314-cp314t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:45c953e57028c31d473d6b648552d9cab1efe20a42ad139d78e11d8f42a36130", size = 791183, upload-time = "2025-10-30T11:17:11.99Z" },
{ url = "https://files.pythonhosted.org/packages/af/2f/e8a86f861ad83f3bb5455f596d5c802e34fcdb8c53a489083a70fd301333/nh3-0.3.2-cp314-cp314t-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:2c9850041b77a9147d6bbd6dbbf13eeec7009eb60b44e83f07fcb2910075bf9b", size = 829127, upload-time = "2025-10-30T11:17:13.192Z" },
{ url = "https://files.pythonhosted.org/packages/d8/97/77aef4daf0479754e8e90c7f8f48f3b7b8725a3b8c0df45f2258017a6895/nh3-0.3.2-cp314-cp314t-musllinux_1_2_aarch64.whl", hash = "sha256:403c11563e50b915d0efdb622866d1d9e4506bce590ef7da57789bf71dd148b5", size = 997131, upload-time = "2025-10-30T11:17:14.677Z" },
{ url = "https://files.pythonhosted.org/packages/41/ee/fd8140e4df9d52143e89951dd0d797f5546004c6043285289fbbe3112293/nh3-0.3.2-cp314-cp314t-musllinux_1_2_armv7l.whl", hash = "sha256:0dca4365db62b2d71ff1620ee4f800c4729849906c5dd504ee1a7b2389558e31", size = 1068783, upload-time = "2025-10-30T11:17:15.861Z" },
{ url = "https://files.pythonhosted.org/packages/87/64/bdd9631779e2d588b08391f7555828f352e7f6427889daf2fa424bfc90c9/nh3-0.3.2-cp314-cp314t-musllinux_1_2_i686.whl", hash = "sha256:0fe7ee035dd7b2290715baf29cb27167dddd2ff70ea7d052c958dbd80d323c99", size = 994732, upload-time = "2025-10-30T11:17:17.155Z" },
{ url = "https://files.pythonhosted.org/packages/79/66/90190033654f1f28ca98e3d76b8be1194505583f9426b0dcde782a3970a2/nh3-0.3.2-cp314-cp314t-musllinux_1_2_x86_64.whl", hash = "sha256:a40202fd58e49129764f025bbaae77028e420f1d5b3c8e6f6fd3a6490d513868", size = 975997, upload-time = "2025-10-30T11:17:18.77Z" },
{ url = "https://files.pythonhosted.org/packages/34/30/ebf8e2e8d71fdb5a5d5d8836207177aed1682df819cbde7f42f16898946c/nh3-0.3.2-cp314-cp314t-win32.whl", hash = "sha256:1f9ba555a797dbdcd844b89523f29cdc90973d8bd2e836ea6b962cf567cadd93", size = 583364, upload-time = "2025-10-30T11:17:20.286Z" },
{ url = "https://files.pythonhosted.org/packages/94/ae/95c52b5a75da429f11ca8902c2128f64daafdc77758d370e4cc310ecda55/nh3-0.3.2-cp314-cp314t-win_amd64.whl", hash = "sha256:dce4248edc427c9b79261f3e6e2b3ecbdd9b88c267012168b4a7b3fc6fd41d13", size = 589982, upload-time = "2025-10-30T11:17:21.384Z" },
{ url = "https://files.pythonhosted.org/packages/b4/bd/c7d862a4381b95f2469704de32c0ad419def0f4a84b7a138a79532238114/nh3-0.3.2-cp314-cp314t-win_arm64.whl", hash = "sha256:019ecbd007536b67fdf76fab411b648fb64e2257ca3262ec80c3425c24028c80", size = 577126, upload-time = "2025-10-30T11:17:22.755Z" },
{ url = "https://files.pythonhosted.org/packages/b6/3e/f5a5cc2885c24be13e9b937441bd16a012ac34a657fe05e58927e8af8b7a/nh3-0.3.2-cp38-abi3-macosx_10_12_x86_64.macosx_11_0_arm64.macosx_10_12_universal2.whl", hash = "sha256:7064ccf5ace75825bd7bf57859daaaf16ed28660c1c6b306b649a9eda4b54b1e", size = 1431980, upload-time = "2025-10-30T11:17:25.457Z" },
{ url = "https://files.pythonhosted.org/packages/7f/f7/529a99324d7ef055de88b690858f4189379708abae92ace799365a797b7f/nh3-0.3.2-cp38-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c8745454cdd28bbbc90861b80a0111a195b0e3961b9fa2e672be89eb199fa5d8", size = 820805, upload-time = "2025-10-30T11:17:26.98Z" },
{ url = "https://files.pythonhosted.org/packages/3d/62/19b7c50ccd1fa7d0764822d2cea8f2a320f2fd77474c7a1805cb22cf69b0/nh3-0.3.2-cp38-abi3-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:72d67c25a84579f4a432c065e8b4274e53b7cf1df8f792cf846abfe2c3090866", size = 803527, upload-time = "2025-10-30T11:17:28.284Z" },
{ url = "https://files.pythonhosted.org/packages/4a/ca/f022273bab5440abff6302731a49410c5ef66b1a9502ba3fbb2df998d9ff/nh3-0.3.2-cp38-abi3-manylinux_2_17_ppc64.manylinux2014_ppc64.whl", hash = "sha256:13398e676a14d6233f372c75f52d5ae74f98210172991f7a3142a736bd92b131", size = 1051674, upload-time = "2025-10-30T11:17:29.909Z" },
{ url = "https://files.pythonhosted.org/packages/fa/f7/5728e3b32a11daf5bd21cf71d91c463f74305938bc3eb9e0ac1ce141646e/nh3-0.3.2-cp38-abi3-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:03d617e5c8aa7331bd2659c654e021caf9bba704b109e7b2b28b039a00949fe5", size = 1004737, upload-time = "2025-10-30T11:17:31.205Z" },
{ url = "https://files.pythonhosted.org/packages/53/7f/f17e0dba0a99cee29e6cee6d4d52340ef9cb1f8a06946d3a01eb7ec2fb01/nh3-0.3.2-cp38-abi3-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f2f55c4d2d5a207e74eefe4d828067bbb01300e06e2a7436142f915c5928de07", size = 911745, upload-time = "2025-10-30T11:17:32.945Z" },
{ url = "https://files.pythonhosted.org/packages/42/0f/c76bf3dba22c73c38e9b1113b017cf163f7696f50e003404ec5ecdb1e8a6/nh3-0.3.2-cp38-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7bb18403f02b655a1bbe4e3a4696c2ae1d6ae8f5991f7cacb684b1ae27e6c9f7", size = 797184, upload-time = "2025-10-30T11:17:34.226Z" },
{ url = "https://files.pythonhosted.org/packages/08/a1/73d8250f888fb0ddf1b119b139c382f8903d8bb0c5bd1f64afc7e38dad1d/nh3-0.3.2-cp38-abi3-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:6d66f41672eb4060cf87c037f760bdbc6847852ca9ef8e9c5a5da18f090abf87", size = 838556, upload-time = "2025-10-30T11:17:35.875Z" },
{ url = "https://files.pythonhosted.org/packages/d1/09/deb57f1fb656a7a5192497f4a287b0ade5a2ff6b5d5de4736d13ef6d2c1f/nh3-0.3.2-cp38-abi3-musllinux_1_2_aarch64.whl", hash = "sha256:f97f8b25cb2681d25e2338148159447e4d689aafdccfcf19e61ff7db3905768a", size = 1006695, upload-time = "2025-10-30T11:17:37.071Z" },
{ url = "https://files.pythonhosted.org/packages/b6/61/8f4d41c4ccdac30e4b1a4fa7be4b0f9914d8314a5058472f84c8e101a418/nh3-0.3.2-cp38-abi3-musllinux_1_2_armv7l.whl", hash = "sha256:2ab70e8c6c7d2ce953d2a58102eefa90c2d0a5ed7aa40c7e29a487bc5e613131", size = 1075471, upload-time = "2025-10-30T11:17:38.225Z" },
{ url = "https://files.pythonhosted.org/packages/b0/c6/966aec0cb4705e69f6c3580422c239205d5d4d0e50fac380b21e87b6cf1b/nh3-0.3.2-cp38-abi3-musllinux_1_2_i686.whl", hash = "sha256:1710f3901cd6440ca92494ba2eb6dc260f829fa8d9196b659fa10de825610ce0", size = 1002439, upload-time = "2025-10-30T11:17:39.553Z" },
{ url = "https://files.pythonhosted.org/packages/e2/c8/97a2d5f7a314cce2c5c49f30c6f161b7f3617960ade4bfc2fd1ee092cb20/nh3-0.3.2-cp38-abi3-musllinux_1_2_x86_64.whl", hash = "sha256:91e9b001101fb4500a2aafe3e7c92928d85242d38bf5ac0aba0b7480da0a4cd6", size = 987439, upload-time = "2025-10-30T11:17:40.81Z" },
{ url = "https://files.pythonhosted.org/packages/0d/95/2d6fc6461687d7a171f087995247dec33e8749a562bfadd85fb5dbf37a11/nh3-0.3.2-cp38-abi3-win32.whl", hash = "sha256:169db03df90da63286e0560ea0efa9b6f3b59844a9735514a1d47e6bb2c8c61b", size = 589826, upload-time = "2025-10-30T11:17:42.239Z" },
{ url = "https://files.pythonhosted.org/packages/64/9a/1a1c154f10a575d20dd634e5697805e589bbdb7673a0ad00e8da90044ba7/nh3-0.3.2-cp38-abi3-win_amd64.whl", hash = "sha256:562da3dca7a17f9077593214a9781a94b8d76de4f158f8c895e62f09573945fe", size = 596406, upload-time = "2025-10-30T11:17:43.773Z" },
{ url = "https://files.pythonhosted.org/packages/9e/7e/a96255f63b7aef032cbee8fc4d6e37def72e3aaedc1f72759235e8f13cb1/nh3-0.3.2-cp38-abi3-win_arm64.whl", hash = "sha256:cf5964d54edd405e68583114a7cba929468bcd7db5e676ae38ee954de1cfc104", size = 584162, upload-time = "2025-10-30T11:17:44.96Z" },
]
[[package]]
name = "nodeenv"
version = "1.9.1"
@ -1192,7 +1291,7 @@ name = "nvidia-cudnn-cu12"
version = "9.10.2.21"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "nvidia-cublas-cu12" },
{ name = "nvidia-cublas-cu12", marker = "sys_platform == 'linux' or sys_platform == 'win32'" },
]
wheels = [
{ url = "https://files.pythonhosted.org/packages/ba/51/e123d997aa098c61d029f76663dedbfb9bc8dcf8c60cbd6adbe42f76d049/nvidia_cudnn_cu12-9.10.2.21-py3-none-manylinux_2_27_x86_64.whl", hash = "sha256:949452be657fa16687d0930933f032835951ef0892b37d2d53824d1a84dc97a8", size = 706758467, upload-time = "2025-06-06T21:54:08.597Z" },
@ -1203,7 +1302,7 @@ name = "nvidia-cufft-cu12"
version = "11.3.3.83"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "nvidia-nvjitlink-cu12" },
{ name = "nvidia-nvjitlink-cu12", marker = "sys_platform == 'linux' or sys_platform == 'win32'" },
]
wheels = [
{ url = "https://files.pythonhosted.org/packages/1f/13/ee4e00f30e676b66ae65b4f08cb5bcbb8392c03f54f2d5413ea99a5d1c80/nvidia_cufft_cu12-11.3.3.83-py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:4d2dd21ec0b88cf61b62e6b43564355e5222e4a3fb394cac0db101f2dd0d4f74", size = 193118695, upload-time = "2025-03-07T01:45:27.821Z" },
@ -1230,9 +1329,9 @@ name = "nvidia-cusolver-cu12"
version = "11.7.3.90"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "nvidia-cublas-cu12" },
{ name = "nvidia-cusparse-cu12" },
{ name = "nvidia-nvjitlink-cu12" },
{ name = "nvidia-cublas-cu12", marker = "sys_platform == 'linux' or sys_platform == 'win32'" },
{ name = "nvidia-cusparse-cu12", marker = "sys_platform == 'linux' or sys_platform == 'win32'" },
{ name = "nvidia-nvjitlink-cu12", marker = "sys_platform == 'linux' or sys_platform == 'win32'" },
]
wheels = [
{ url = "https://files.pythonhosted.org/packages/85/48/9a13d2975803e8cf2777d5ed57b87a0b6ca2cc795f9a4f59796a910bfb80/nvidia_cusolver_cu12-11.7.3.90-py3-none-manylinux_2_27_x86_64.whl", hash = "sha256:4376c11ad263152bd50ea295c05370360776f8c3427b30991df774f9fb26c450", size = 267506905, upload-time = "2025-03-07T01:47:16.273Z" },
@ -1243,7 +1342,7 @@ name = "nvidia-cusparse-cu12"
version = "12.5.8.93"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "nvidia-nvjitlink-cu12" },
{ name = "nvidia-nvjitlink-cu12", marker = "sys_platform == 'linux' or sys_platform == 'win32'" },
]
wheels = [
{ url = "https://files.pythonhosted.org/packages/c2/f5/e1854cb2f2bcd4280c44736c93550cc300ff4b8c95ebe370d0aa7d2b473d/nvidia_cusparse_cu12-12.5.8.93-py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:1ec05d76bbbd8b61b06a80e1eaf8cf4959c3d4ce8e711b65ebd0443bb0ebb13b", size = 288216466, upload-time = "2025-03-07T01:48:13.779Z" },
@ -1308,6 +1407,15 @@ wheels = [
{ url = "https://files.pythonhosted.org/packages/aa/18/a8444036c6dd65ba3624c63b734d3ba95ba63ace513078e1580590075d21/pastel-0.2.1-py2.py3-none-any.whl", hash = "sha256:4349225fcdf6c2bb34d483e523475de5bb04a5c10ef711263452cb37d7dd4364", size = 5955, upload-time = "2020-09-16T19:21:11.409Z" },
]
[[package]]
name = "pathspec"
version = "0.12.1"
source = { registry = "https://pypi.org/simple" }
sdist = { url = "https://files.pythonhosted.org/packages/ca/bc/f35b8446f4531a7cb215605d100cd88b7ac6f44ab3fc94870c120ab3adbf/pathspec-0.12.1.tar.gz", hash = "sha256:a482d51503a1ab33b1c67a6c3813a26953dbdc71c31dacaef9a838c4e29f5712", size = 51043, upload-time = "2023-12-10T22:30:45Z" }
wheels = [
{ url = "https://files.pythonhosted.org/packages/cc/20/ff623b09d963f88bfde16306a54e12ee5ea43e9b597108672ff3a408aad6/pathspec-0.12.1-py3-none-any.whl", hash = "sha256:a0d503e138a4c123b27490a4f7beda6a01c6f288df0e4a8b79c7eb0dc7b4cc08", size = 31191, upload-time = "2023-12-10T22:30:43.14Z" },
]
[[package]]
name = "pillow"
version = "11.3.0"
@ -1396,6 +1504,32 @@ wheels = [
{ url = "https://files.pythonhosted.org/packages/92/1b/5337af1a6a478d25a3e3c56b9b4b42b0a160314e02f4a0498d5322c8dac4/poethepoet-0.37.0-py3-none-any.whl", hash = "sha256:861790276315abcc8df1b4bd60e28c3d48a06db273edd3092f3c94e1a46e5e22", size = 90062, upload-time = "2025-08-11T18:00:27.595Z" },
]
[[package]]
name = "polars"
version = "1.35.1"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "polars-runtime-32" },
]
sdist = { url = "https://files.pythonhosted.org/packages/9b/5b/3caad788d93304026cbf0ab4c37f8402058b64a2f153b9c62f8b30f5d2ee/polars-1.35.1.tar.gz", hash = "sha256:06548e6d554580151d6ca7452d74bceeec4640b5b9261836889b8e68cfd7a62e", size = 694881, upload-time = "2025-10-30T12:12:52.294Z" }
wheels = [
{ url = "https://files.pythonhosted.org/packages/9f/4c/21a227b722534404241c2a76beceb7463469d50c775a227fc5c209eb8adc/polars-1.35.1-py3-none-any.whl", hash = "sha256:c29a933f28aa330d96a633adbd79aa5e6a6247a802a720eead9933f4613bdbf4", size = 783598, upload-time = "2025-10-30T12:11:54.668Z" },
]
[[package]]
name = "polars-runtime-32"
version = "1.35.1"
source = { registry = "https://pypi.org/simple" }
sdist = { url = "https://files.pythonhosted.org/packages/df/3e/19c252e8eb4096300c1a36ec3e50a27e5fa9a1ccaf32d3927793c16abaee/polars_runtime_32-1.35.1.tar.gz", hash = "sha256:f6b4ec9cd58b31c87af1b8c110c9c986d82345f1d50d7f7595b5d447a19dc365", size = 2696218, upload-time = "2025-10-30T12:12:53.479Z" }
wheels = [
{ url = "https://files.pythonhosted.org/packages/08/2c/da339459805a26105e9d9c2f07e43ca5b8baeee55acd5457e6881487a79a/polars_runtime_32-1.35.1-cp39-abi3-macosx_10_12_x86_64.whl", hash = "sha256:6f051a42f6ae2f26e3bc2cf1f170f2120602976e2a3ffb6cfba742eecc7cc620", size = 40525100, upload-time = "2025-10-30T12:11:58.098Z" },
{ url = "https://files.pythonhosted.org/packages/27/70/a0733568b3533481924d2ce68b279ab3d7334e5fa6ed259f671f650b7c5e/polars_runtime_32-1.35.1-cp39-abi3-macosx_11_0_arm64.whl", hash = "sha256:c2232f9cf05ba59efc72d940b86c033d41fd2d70bf2742e8115ed7112a766aa9", size = 36701908, upload-time = "2025-10-30T12:12:02.166Z" },
{ url = "https://files.pythonhosted.org/packages/46/54/6c09137bef9da72fd891ba58c2962cc7c6c5cad4649c0e668d6b344a9d7b/polars_runtime_32-1.35.1-cp39-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:42f9837348557fd674477ea40a6ac8a7e839674f6dd0a199df24be91b026024c", size = 41317692, upload-time = "2025-10-30T12:12:04.928Z" },
{ url = "https://files.pythonhosted.org/packages/22/55/81c5b266a947c339edd7fbaa9e1d9614012d02418453f48b76cc177d3dd9/polars_runtime_32-1.35.1-cp39-abi3-manylinux_2_24_aarch64.whl", hash = "sha256:c873aeb36fed182d5ebc35ca17c7eb193fe83ae2ea551ee8523ec34776731390", size = 37853058, upload-time = "2025-10-30T12:12:08.342Z" },
{ url = "https://files.pythonhosted.org/packages/6c/58/be8b034d559eac515f52408fd6537be9bea095bc0388946a4e38910d3d50/polars_runtime_32-1.35.1-cp39-abi3-win_amd64.whl", hash = "sha256:35cde9453ca7032933f0e58e9ed4388f5a1e415dd0db2dd1e442c81d815e630c", size = 41289554, upload-time = "2025-10-30T12:12:11.104Z" },
{ url = "https://files.pythonhosted.org/packages/f4/7f/e0111b9e2a1169ea82cde3ded9c92683e93c26dfccd72aee727996a1ac5b/polars_runtime_32-1.35.1-cp39-abi3-win_arm64.whl", hash = "sha256:fd77757a6c9eb9865c4bfb7b07e22225207c6b7da382bd0b9bd47732f637105d", size = 36958878, upload-time = "2025-10-30T12:12:15.206Z" },
]
[[package]]
name = "pre-commit"
version = "4.3.0"
@ -1670,7 +1804,8 @@ dependencies = [
{ name = "lightning-utilities" },
{ name = "packaging" },
{ name = "pyyaml" },
{ name = "torch" },
{ name = "torch", version = "2.8.0", source = { registry = "https://pypi.org/simple" }, marker = "sys_platform != 'linux' and sys_platform != 'win32'" },
{ name = "torch", version = "2.8.0+cu128", source = { registry = "https://download.pytorch.org/whl/cu128" }, marker = "sys_platform == 'linux' or sys_platform == 'win32'" },
{ name = "torchmetrics" },
{ name = "tqdm" },
{ name = "typing-extensions" },
@ -1963,15 +2098,40 @@ wheels = [
{ url = "https://files.pythonhosted.org/packages/32/d5/f9a850d79b0851d1d4ef6456097579a9005b31fea68726a4ae5f2d82ddd9/threadpoolctl-3.6.0-py3-none-any.whl", hash = "sha256:43a0b8fd5a2928500110039e43a5eed8480b918967083ea48dc3ab9f13c4a7fb", size = 18638, upload-time = "2025-03-13T13:49:21.846Z" },
]
[[package]]
name = "torch"
version = "2.8.0"
source = { registry = "https://pypi.org/simple" }
resolution-markers = [
"sys_platform != 'linux' and sys_platform != 'win32'",
]
dependencies = [
{ name = "filelock", marker = "sys_platform != 'linux' and sys_platform != 'win32'" },
{ name = "fsspec", marker = "sys_platform != 'linux' and sys_platform != 'win32'" },
{ name = "jinja2", marker = "sys_platform != 'linux' and sys_platform != 'win32'" },
{ name = "networkx", marker = "sys_platform != 'linux' and sys_platform != 'win32'" },
{ name = "setuptools", marker = "sys_platform != 'linux' and sys_platform != 'win32'" },
{ name = "sympy", marker = "sys_platform != 'linux' and sys_platform != 'win32'" },
{ name = "typing-extensions", marker = "sys_platform != 'linux' and sys_platform != 'win32'" },
]
wheels = [
{ url = "https://files.pythonhosted.org/packages/be/66/5c9a321b325aaecb92d4d1855421e3a055abd77903b7dab6575ca07796db/torch-2.8.0-cp312-none-macosx_11_0_arm64.whl", hash = "sha256:619c2869db3ada2c0105487ba21b5008defcc472d23f8b80ed91ac4a380283b0", size = 73630478, upload-time = "2025-08-06T14:53:57.144Z" },
{ url = "https://files.pythonhosted.org/packages/de/69/8b7b13bba430f5e21d77708b616f767683629fc4f8037564a177d20f90ed/torch-2.8.0-cp313-cp313t-macosx_14_0_arm64.whl", hash = "sha256:1a62a1ec4b0498930e2543535cf70b1bef8c777713de7ceb84cd79115f553767", size = 73915128, upload-time = "2025-08-06T14:54:34.769Z" },
{ url = "https://files.pythonhosted.org/packages/04/6e/650bb7f28f771af0cb791b02348db8b7f5f64f40f6829ee82aa6ce99aabe/torch-2.8.0-cp313-none-macosx_11_0_arm64.whl", hash = "sha256:7b677e17f5a3e69fdef7eb3b9da72622f8d322692930297e4ccb52fefc6c8211", size = 73632395, upload-time = "2025-08-06T14:55:28.645Z" },
]
[[package]]
name = "torch"
version = "2.8.0+cu128"
source = { registry = "https://download.pytorch.org/whl/cu128" }
resolution-markers = [
"sys_platform == 'linux' or sys_platform == 'win32'",
]
dependencies = [
{ name = "filelock" },
{ name = "fsspec" },
{ name = "jinja2" },
{ name = "networkx" },
{ name = "filelock", marker = "sys_platform == 'linux' or sys_platform == 'win32'" },
{ name = "fsspec", marker = "sys_platform == 'linux' or sys_platform == 'win32'" },
{ name = "jinja2", marker = "sys_platform == 'linux' or sys_platform == 'win32'" },
{ name = "networkx", marker = "sys_platform == 'linux' or sys_platform == 'win32'" },
{ name = "nvidia-cublas-cu12", marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" },
{ name = "nvidia-cuda-cupti-cu12", marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" },
{ name = "nvidia-cuda-nvrtc-cu12", marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" },
@ -1986,10 +2146,10 @@ dependencies = [
{ name = "nvidia-nccl-cu12", marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" },
{ name = "nvidia-nvjitlink-cu12", marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" },
{ name = "nvidia-nvtx-cu12", marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" },
{ name = "setuptools" },
{ name = "sympy" },
{ name = "setuptools", marker = "sys_platform == 'linux' or sys_platform == 'win32'" },
{ name = "sympy", marker = "sys_platform == 'linux' or sys_platform == 'win32'" },
{ name = "triton", marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" },
{ name = "typing-extensions" },
{ name = "typing-extensions", marker = "sys_platform == 'linux' or sys_platform == 'win32'" },
]
wheels = [
{ url = "https://download.pytorch.org/whl/cu128/torch-2.8.0%2Bcu128-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:4354fc05bb79b208d6995a04ca1ceef6a9547b1c4334435574353d381c55087c" },
@ -2008,7 +2168,8 @@ dependencies = [
{ name = "lightning-utilities" },
{ name = "numpy" },
{ name = "packaging" },
{ name = "torch" },
{ name = "torch", version = "2.8.0", source = { registry = "https://pypi.org/simple" }, marker = "sys_platform != 'linux' and sys_platform != 'win32'" },
{ name = "torch", version = "2.8.0+cu128", source = { registry = "https://download.pytorch.org/whl/cu128" }, marker = "sys_platform == 'linux' or sys_platform == 'win32'" },
]
sdist = { url = "https://files.pythonhosted.org/packages/85/2e/48a887a59ecc4a10ce9e8b35b3e3c5cef29d902c4eac143378526e7485cb/torchmetrics-1.8.2.tar.gz", hash = "sha256:cf64a901036bf107f17a524009eea7781c9c5315d130713aeca5747a686fe7a5", size = 580679, upload-time = "2025-09-03T14:00:54.077Z" }
wheels = [
@ -2032,7 +2193,7 @@ name = "triton"
version = "3.4.0"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "setuptools" },
{ name = "setuptools", marker = "sys_platform == 'linux' or sys_platform == 'win32'" },
]
wheels = [
{ url = "https://files.pythonhosted.org/packages/d0/66/b1eb52839f563623d185f0927eb3530ee4d5ffe9d377cdaf5346b306689e/triton-3.4.0-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:31c1d84a5c0ec2c0f8e8a072d7fd150cab84a9c239eaddc6706c081bfae4eb04", size = 155560068, upload-time = "2025-07-30T19:58:37.081Z" },