15 Commits

Author SHA1 Message Date
9ec5e433ea test fixes 2025-11-07 08:46:28 +13:00
dddea79daf test fixes 2025-11-07 08:32:05 +13:00
cfd8d7440b Merge remote-tracking branch 'origin/develop' into enhancement/dataset
# Conflicts:
#	epdb/models.py
#	tests/test_enviformer.py
#	tests/test_model.py
2025-11-07 08:28:03 +13:00
6a5413b492 pyproject.toml update and merge from develop 2025-11-07 08:09:06 +13:00
8282855975 add compatibility with Descriptor objects. 2025-11-06 10:42:32 +13:00
09ddd46d69 app domain assess and assess_batch. Add threshold check for compatability 2025-11-06 10:32:21 +13:00
9f0e396437 ... 2025-11-05 13:30:03 +13:00
5dc4c822c4 simple implementation for other feature types #120 2025-11-05 13:11:40 +13:00
f1f7ce344c finished app domain conversion #120 2025-11-05 12:41:33 +13:00
98d62e1d1f [Feature] Make Matomo Site ID configurable via .env (#183)
Co-authored-by: Tim Lorsbach <tim@lorsba.ch>
Reviewed-on: enviPath/enviPy#183
2025-11-05 10:19:07 +13:00
13af49488e starting on app domain with new dataset #120 2025-11-04 16:33:56 +13:00
ac5d370b18 new RuleBasedDataset and EnviFormer dataset working for respective models #120 2025-11-04 10:58:16 +13:00
ff51e48f90 work towards #120 2025-11-03 15:24:28 +13:00
8166df6f39 work towards #120 2025-10-24 14:40:26 +13:00
2980a75daa start towards #120 2025-10-22 08:22:29 +13:00
13 changed files with 760 additions and 514 deletions

View File

@ -16,3 +16,5 @@ POSTGRES_PORT=
# MAIL
EMAIL_HOST_USER=
EMAIL_HOST_PASSWORD=
# MATOMO
MATOMO_SITE_ID

View File

@ -357,3 +357,6 @@ if MS_ENTRA_ENABLED:
MS_ENTRA_AUTHORITY = f"https://login.microsoftonline.com/{MS_ENTRA_TENANT_ID}"
MS_ENTRA_REDIRECT_URI = os.environ["MS_REDIRECT_URI"]
MS_ENTRA_SCOPES = os.environ.get("MS_SCOPES", "").split(",")
# Site ID 10 -> beta.envipath.org
MATOMO_SITE_ID = os.environ.get("MATOMO_SITE_ID", "10")

View File

@ -1542,9 +1542,7 @@ class SPathway(object):
if sub.app_domain_assessment is None:
if self.prediction_setting.model:
if self.prediction_setting.model.app_domain:
app_domain_assessment = self.prediction_setting.model.app_domain.assess(
sub.smiles
)[0]
app_domain_assessment = self.prediction_setting.model.app_domain.assess(sub.smiles)
if self.persist is not None:
n = self.snode_persist_lookup[sub]
@ -1576,11 +1574,7 @@ class SPathway(object):
app_domain_assessment = None
if self.prediction_setting.model:
if self.prediction_setting.model.app_domain:
app_domain_assessment = (
self.prediction_setting.model.app_domain.assess(c)[
0
]
)
app_domain_assessment = (self.prediction_setting.model.app_domain.assess(c))
self.smiles_to_node[c] = SNode(
c, sub.depth + 1, app_domain_assessment

View File

@ -28,7 +28,8 @@ from sklearn.metrics import precision_score, recall_score, jaccard_score
from sklearn.model_selection import ShuffleSplit
from utilities.chem import FormatConverter, ProductSet, PredictionResult, IndigoUtils
from utilities.ml import Dataset, ApplicabilityDomainPCA, EnsembleClassifierChain, RelativeReasoning
from utilities.ml import RuleBasedDataset, ApplicabilityDomainPCA, EnsembleClassifierChain, RelativeReasoning, \
EnviFormerDataset, Dataset
logger = logging.getLogger(__name__)
@ -2175,7 +2176,7 @@ class PackageBasedModel(EPModel):
applicable_rules = self.applicable_rules
reactions = list(self._get_reactions())
ds = Dataset.generate_dataset(reactions, applicable_rules, educts_only=True)
ds = RuleBasedDataset.generate_dataset(reactions, applicable_rules, educts_only=True)
end = datetime.now()
logger.debug(f"build_dataset took {(end - start).total_seconds()} seconds")
@ -2184,7 +2185,7 @@ class PackageBasedModel(EPModel):
ds.save(f)
return ds
def load_dataset(self) -> "Dataset":
def load_dataset(self) -> "Dataset | RuleBasedDataset | EnviFormerDataset":
ds_path = os.path.join(s.MODEL_DIR, f"{self.uuid}_ds.pkl")
return Dataset.load(ds_path)
@ -2225,7 +2226,7 @@ class PackageBasedModel(EPModel):
self.model_status = self.BUILT_NOT_EVALUATED
self.save()
def evaluate_model(self, multigen: bool, eval_packages: List["Package"] = None):
def evaluate_model(self, multigen: bool, eval_packages: List["Package"] = None, **kwargs):
if self.model_status != self.BUILT_NOT_EVALUATED:
raise ValueError(f"Can't evaluate a model in state {self.model_status}!")
@ -2343,37 +2344,37 @@ class PackageBasedModel(EPModel):
eval_reactions = list(
Reaction.objects.filter(package__in=self.eval_packages.all()).distinct()
)
ds = Dataset.generate_dataset(eval_reactions, self.applicable_rules, educts_only=True)
ds = RuleBasedDataset.generate_dataset(eval_reactions, self.applicable_rules, educts_only=True)
if isinstance(self, RuleBasedRelativeReasoning):
X = np.array(ds.X(exclude_id_col=False, na_replacement=None))
y = np.array(ds.y(na_replacement=np.nan))
X = ds.X(exclude_id_col=False, na_replacement=None).to_numpy()
y = ds.y(na_replacement=np.nan).to_numpy()
else:
X = np.array(ds.X(na_replacement=np.nan))
y = np.array(ds.y(na_replacement=np.nan))
X = ds.X(na_replacement=np.nan).to_numpy()
y = ds.y(na_replacement=np.nan).to_numpy()
single_gen_result = evaluate_sg(self.model, X, y, np.arange(len(X)), self.threshold)
self.eval_results = self.compute_averages([single_gen_result])
else:
ds = self.load_dataset()
if isinstance(self, RuleBasedRelativeReasoning):
X = np.array(ds.X(exclude_id_col=False, na_replacement=None))
y = np.array(ds.y(na_replacement=np.nan))
X = ds.X(exclude_id_col=False, na_replacement=None).to_numpy()
y = ds.y(na_replacement=np.nan).to_numpy()
else:
X = np.array(ds.X(na_replacement=np.nan))
y = np.array(ds.y(na_replacement=np.nan))
X = ds.X(na_replacement=np.nan).to_numpy()
y = ds.y(na_replacement=np.nan).to_numpy()
n_splits = 20
n_splits = kwargs.get("n_splits", 20)
shuff = ShuffleSplit(n_splits=n_splits, test_size=0.25, random_state=42)
splits = list(shuff.split(X))
from joblib import Parallel, delayed
models = Parallel(n_jobs=10)(
models = Parallel(n_jobs=min(10, len(splits)))(
delayed(train_func)(X, y, train_index, self._model_args())
for train_index, _ in splits
)
evaluations = Parallel(n_jobs=10)(
evaluations = Parallel(n_jobs=min(10, len(splits)))(
delayed(evaluate_sg)(model, X, y, test_index, self.threshold)
for model, (_, test_index) in zip(models, splits)
)
@ -2585,11 +2586,11 @@ class RuleBasedRelativeReasoning(PackageBasedModel):
return rbrr
def _fit_model(self, ds: Dataset):
def _fit_model(self, ds: RuleBasedDataset):
X, y = ds.X(exclude_id_col=False, na_replacement=None), ds.y(na_replacement=None)
model = RelativeReasoning(
start_index=ds.triggered()[0],
end_index=ds.triggered()[1],
end_index=ds.triggered()[-1],
)
model.fit(X, y)
return model
@ -2599,7 +2600,7 @@ class RuleBasedRelativeReasoning(PackageBasedModel):
return {
"clz": "RuleBaseRelativeReasoning",
"start_index": ds.triggered()[0],
"end_index": ds.triggered()[1],
"end_index": ds.triggered()[-1],
}
def _save_model(self, model):
@ -2687,11 +2688,11 @@ class MLRelativeReasoning(PackageBasedModel):
return mlrr
def _fit_model(self, ds: Dataset):
def _fit_model(self, ds: RuleBasedDataset):
X, y = ds.X(na_replacement=np.nan), ds.y(na_replacement=np.nan)
model = EnsembleClassifierChain(**s.DEFAULT_MODEL_PARAMS)
model.fit(X, y)
model.fit(X.to_numpy(), y.to_numpy())
return model
def _model_args(self):
@ -2714,7 +2715,7 @@ class MLRelativeReasoning(PackageBasedModel):
start = datetime.now()
ds = self.load_dataset()
classify_ds, classify_prods = ds.classification_dataset([smiles], self.applicable_rules)
pred = self.model.predict_proba(classify_ds.X())
pred = self.model.predict_proba(classify_ds.X().to_numpy())
res = MLRelativeReasoning.combine_products_and_probs(
self.applicable_rules, pred[0], classify_prods[0]
@ -2759,7 +2760,9 @@ class ApplicabilityDomain(EnviPathModel):
@cached_property
def training_set_probs(self):
return joblib.load(os.path.join(s.MODEL_DIR, f"{self.model.uuid}_train_probs.pkl"))
ds = self.model.load_dataset()
col_ids = ds.block_indices("prob")
return ds[:, col_ids]
def build(self):
ds = self.model.load_dataset()
@ -2767,9 +2770,9 @@ class ApplicabilityDomain(EnviPathModel):
start = datetime.now()
# Get Trainingset probs and dump them as they're required when using the app domain
probs = self.model.model.predict_proba(ds.X())
f = os.path.join(s.MODEL_DIR, f"{self.model.uuid}_train_probs.pkl")
joblib.dump(probs, f)
probs = self.model.model.predict_proba(ds.X().to_numpy())
ds.add_probs(probs)
ds.save(os.path.join(s.MODEL_DIR, f"{self.model.uuid}_ds.pkl"))
ad = ApplicabilityDomainPCA(num_neighbours=self.num_neighbours)
ad.build(ds)
@ -2792,16 +2795,19 @@ class ApplicabilityDomain(EnviPathModel):
joblib.dump(ad, f)
def assess(self, structure: Union[str, "CompoundStructure"]):
return self.assess_batch([structure])[0]
def assess_batch(self, structures: List["CompoundStructure | str"]):
ds = self.model.load_dataset()
if isinstance(structure, CompoundStructure):
smiles = structure.smiles
else:
smiles = structure
smiles = []
for struct in structures:
if isinstance(struct, CompoundStructure):
smiles.append(structures.smiles)
else:
smiles.append(structures)
assessment_ds, assessment_prods = ds.classification_dataset(
[structure], self.model.applicable_rules
)
assessment_ds, assessment_prods = ds.classification_dataset(structures, self.model.applicable_rules)
# qualified_neighbours_per_rule is a nested dictionary structured as:
# {
@ -2814,82 +2820,46 @@ class ApplicabilityDomain(EnviPathModel):
# it identifies all training structures that have the same trigger reaction activated (i.e., value 1).
# This is used to find "qualified neighbours" — training examples that share the same triggered feature
# with a given assessment structure under a particular rule.
qualified_neighbours_per_rule: Dict[int, Dict[int, List[int]]] = defaultdict(
lambda: defaultdict(list)
)
qualified_neighbours_per_rule: Dict = {}
for rule_idx, feature_index in enumerate(range(*assessment_ds.triggered())):
feature = ds.columns[feature_index]
if feature.startswith("trig_"):
# TODO unroll loop
for i, cx in enumerate(assessment_ds.X(exclude_id_col=False)):
if int(cx[feature_index]) == 1:
for j, tx in enumerate(ds.X(exclude_id_col=False)):
if int(tx[feature_index]) == 1:
qualified_neighbours_per_rule[i][rule_idx].append(j)
probs = self.training_set_probs
# preds = self.model.model.predict_proba(assessment_ds.X())
import polars as pl
# Select only the triggered columns
for i, row in enumerate(assessment_ds[:, assessment_ds.triggered()].iter_rows(named=True)):
# Find the rules the structure triggers. For each rule, filter the training dataset to rows that also
# trigger that rule.
train_trig = {trig_uuid.split("_")[-1]: ds.filter(pl.col(trig_uuid).eq(1))
for trig_uuid, value in row.items() if value == 1}
qualified_neighbours_per_rule[i] = train_trig
rule_to_i = {str(r.uuid): i for i, r in enumerate(self.model.applicable_rules)}
preds = self.model.combine_products_and_probs(
self.model.applicable_rules,
self.model.model.predict_proba(assessment_ds.X())[0],
self.model.model.predict_proba(assessment_ds.X().to_numpy())[0],
assessment_prods[0],
)
assessments = list()
# loop through our assessment dataset
for i, instance in enumerate(assessment_ds):
for i, instance in enumerate(assessment_ds[:, assessment_ds.struct_features()]):
rule_reliabilities = dict()
local_compatibilities = dict()
neighbours_per_rule = dict()
neighbor_probs_per_rule = dict()
# loop through rule indices together with the collected neighbours indices from train dataset
for rule_idx, vals in qualified_neighbours_per_rule[i].items():
# collect the train dataset instances and store it along with the index (a.k.a. row number) of the
# train dataset
train_instances = []
for v in vals:
train_instances.append((v, ds.at(v)))
# sf is a tuple with start/end index of the features
sf = ds.struct_features()
# compute tanimoto distance for all neighbours
# result ist a list of tuples with train index and computed distance
dists = self._compute_distances(
instance.X()[0][sf[0] : sf[1]],
[ti[1].X()[0][sf[0] : sf[1]] for ti in train_instances],
)
dists_with_index = list()
for ti, dist in zip(train_instances, dists):
dists_with_index.append((ti[0], dist[1]))
for rule_uuid, train_instances in qualified_neighbours_per_rule[i].items():
# compute tanimoto distance for all neighbours and add to dataset
dists = self._compute_distances(assessment_ds[i, assessment_ds.struct_features()].to_numpy()[0],
train_instances[:, train_instances.struct_features()].to_numpy())
train_instances = train_instances.with_columns(dist=pl.Series(dists))
# sort them in a descending way and take at most `self.num_neighbours`
dists_with_index = sorted(dists_with_index, key=lambda x: x[1], reverse=True)
dists_with_index = dists_with_index[: self.num_neighbours]
train_instances = train_instances.sort("dist", descending=True)[:self.num_neighbours]
# compute average distance
rule_reliabilities[rule_idx] = (
sum([d[1] for d in dists_with_index]) / len(dists_with_index)
if len(dists_with_index) > 0
else 0.0
)
rule_reliabilities[rule_uuid] = train_instances.select(pl.mean("dist")).fill_nan(0.0).item()
# for local_compatibility we'll need the datasets for the indices having the highest similarity
neighbour_datasets = [(d[0], ds.at(d[0])) for d in dists_with_index]
local_compatibilities[rule_idx] = self._compute_compatibility(
rule_idx, probs, neighbour_datasets
)
neighbours_per_rule[rule_idx] = [
CompoundStructure.objects.get(uuid=ds[1].structure_id())
for ds in neighbour_datasets
]
neighbor_probs_per_rule[rule_idx] = [
probs[d[0]][rule_idx] for d in dists_with_index
]
local_compatibilities[rule_uuid] = self._compute_compatibility(rule_uuid, train_instances)
neighbours_per_rule[rule_uuid] = list(CompoundStructure.objects.filter(uuid__in=train_instances["structure_id"]))
neighbor_probs_per_rule[rule_uuid] = train_instances[f"prob_{rule_uuid}"].to_list()
ad_res = {
"ad_params": {
@ -2900,23 +2870,21 @@ class ApplicabilityDomain(EnviPathModel):
"local_compatibility_threshold": self.local_compatibilty_threshold,
},
"assessment": {
"smiles": smiles,
"inside_app_domain": self.pca.is_applicable(instance)[0],
"smiles": smiles[i],
"inside_app_domain": self.pca.is_applicable(assessment_ds[i])[0],
},
}
transformations = list()
for rule_idx in rule_reliabilities.keys():
rule = Rule.objects.get(
uuid=instance.columns[instance.observed()[0] + rule_idx].replace("obs_", "")
)
for rule_uuid in rule_reliabilities.keys():
rule = Rule.objects.get(uuid=rule_uuid)
rule_data = rule.simple_json()
rule_data["image"] = f"{rule.url}?image=svg"
neighbors = []
for n, n_prob in zip(
neighbours_per_rule[rule_idx], neighbor_probs_per_rule[rule_idx]
neighbours_per_rule[rule_uuid], neighbor_probs_per_rule[rule_uuid]
):
neighbor = n.simple_json()
neighbor["image"] = f"{n.url}?image=svg"
@ -2933,14 +2901,14 @@ class ApplicabilityDomain(EnviPathModel):
transformation = {
"rule": rule_data,
"reliability": rule_reliabilities[rule_idx],
"reliability": rule_reliabilities[rule_uuid],
# We're setting it here to False, as we don't know whether "assess" is called during pathway
# prediction or from Model Page. For persisted Nodes this field will be overwritten at runtime
"is_predicted": False,
"local_compatibility": local_compatibilities[rule_idx],
"probability": preds[rule_idx].probability,
"local_compatibility": local_compatibilities[rule_uuid],
"probability": preds[rule_to_i[rule_uuid]].probability,
"transformation_products": [
x.product_set for x in preds[rule_idx].product_sets
x.product_set for x in preds[rule_to_i[rule_uuid]].product_sets
],
"times_triggered": ds.times_triggered(str(rule.uuid)),
"neighbors": neighbors,
@ -2958,32 +2926,21 @@ class ApplicabilityDomain(EnviPathModel):
def _compute_distances(classify_instance: List[int], train_instances: List[List[int]]):
from utilities.ml import tanimoto_distance
distances = [
(i, tanimoto_distance(classify_instance, train))
for i, train in enumerate(train_instances)
]
distances = [tanimoto_distance(classify_instance, train) for train in train_instances]
return distances
@staticmethod
def _compute_compatibility(rule_idx: int, preds, neighbours: List[Tuple[int, "Dataset"]]):
tp, tn, fp, fn = 0.0, 0.0, 0.0, 0.0
def _compute_compatibility(self, rule_idx: int, neighbours: "RuleBasedDataset"):
accuracy = 0.0
for n in neighbours:
obs = n[1].y()[0][rule_idx]
pred = preds[n[0]][rule_idx]
if obs and pred:
tp += 1
elif not obs and pred:
fp += 1
elif obs and not pred:
fn += 1
else:
tn += 1
# Jaccard Index
if tp + tn > 0.0:
accuracy = (tp + tn) / (tp + tn + fp + fn)
import polars as pl
obs_pred = neighbours.select(obs=pl.col(f"obs_{rule_idx}").cast(pl.Boolean),
pred=pl.col(f"prob_{rule_idx}") >= self.model.threshold)
# Compute tp, tn, fp, fn using polars expressions
tp = obs_pred.filter((pl.col("obs")) & (pl.col("pred"))).height
tn = obs_pred.filter((~pl.col("obs")) & (~pl.col("pred"))).height
fp = obs_pred.filter((~pl.col("obs")) & (pl.col("pred"))).height
fn = obs_pred.filter((pl.col("obs")) & (~pl.col("pred"))).height
if tp + tn > 0.0:
accuracy = (tp + tn) / (tp + tn + fp + fn)
return accuracy
@ -3084,44 +3041,24 @@ class EnviFormer(PackageBasedModel):
self.save()
start = datetime.now()
# Standardise reactions for the training data, EnviFormer ignores stereochemistry currently
co2 = {"C(=O)=O", "O=C=O"}
ds = []
for reaction in self._get_reactions():
educts = ".".join(
[
FormatConverter.standardize(smile.smiles, remove_stereo=True)
for smile in reaction.educts.all()
]
)
products = ".".join(
[
FormatConverter.standardize(smile.smiles, remove_stereo=True)
for smile in reaction.products.all()
]
)
if products not in co2:
ds.append(f"{educts}>>{products}")
ds = EnviFormerDataset.generate_dataset(self._get_reactions())
end = datetime.now()
logger.debug(f"build_dataset took {(end - start).total_seconds()} seconds")
f = os.path.join(s.MODEL_DIR, f"{self.uuid}_ds.json")
with open(f, "w") as d_file:
json.dump(ds, d_file)
ds.save(f)
return ds
def load_dataset(self) -> "Dataset":
def load_dataset(self):
ds_path = os.path.join(s.MODEL_DIR, f"{self.uuid}_ds.json")
with open(ds_path) as d_file:
ds = json.load(d_file)
return ds
return EnviFormerDataset.load(ds_path)
def _fit_model(self, ds):
# Call to enviFormer's fine_tune function and return the model
from enviformer.finetune import fine_tune
start = datetime.now()
model = fine_tune(ds, s.MODEL_DIR, str(self.uuid), device=s.ENVIFORMER_DEVICE)
model = fine_tune(ds.X(), ds.y(), s.MODEL_DIR, str(self.uuid), device=s.ENVIFORMER_DEVICE)
end = datetime.now()
logger.debug(f"EnviFormer finetuning took {(end - start).total_seconds():.2f} seconds")
return model
@ -3137,7 +3074,7 @@ class EnviFormer(PackageBasedModel):
args = {"clz": "EnviFormer"}
return args
def evaluate_model(self, multigen: bool, eval_packages: List["Package"] = None):
def evaluate_model(self, multigen: bool, eval_packages: List["Package"] = None, **kwargs):
if self.model_status != self.BUILT_NOT_EVALUATED:
raise ValueError(f"Can't evaluate a model in state {self.model_status}!")
@ -3152,21 +3089,20 @@ class EnviFormer(PackageBasedModel):
self.model_status = self.EVALUATING
self.save()
def evaluate_sg(test_reactions, predictions, model_thresh):
def evaluate_sg(test_ds, predictions, model_thresh):
# Group the true products of reactions with the same reactant together
assert len(test_ds) == len(predictions)
true_dict = {}
for r in test_reactions:
reactant, true_product_set = r.split(">>")
for r in test_ds:
reactant, true_product_set = r
true_product_set = {p for p in true_product_set.split(".")}
true_dict[reactant] = true_dict.setdefault(reactant, []) + [true_product_set]
assert len(test_reactions) == len(predictions)
assert sum(len(v) for v in true_dict.values()) == len(test_reactions)
# Group the predicted products of reactions with the same reactant together
pred_dict = {}
for k, pred in enumerate(predictions):
pred_smiles, pred_proba = zip(*pred.items())
reactant, true_product = test_reactions[k].split(">>")
reactant, true_product = test_ds[k, "educts"], test_ds[k, "products"]
pred_dict.setdefault(reactant, {"predict": [], "scores": []})
for smiles, proba in zip(pred_smiles, pred_proba):
smiles = set(smiles.split("."))
@ -3201,7 +3137,7 @@ class EnviFormer(PackageBasedModel):
break
# Recall is TP (correct) / TP + FN (len(test_reactions))
rec = {f"{k:.2f}": v / len(test_reactions) for k, v in correct.items()}
rec = {f"{k:.2f}": v / len(test_ds) for k, v in correct.items()}
# Precision is TP (correct) / TP + FP (predicted)
prec = {
f"{k:.2f}": v / predicted[k] if predicted[k] > 0 else 0 for k, v in correct.items()
@ -3280,47 +3216,32 @@ class EnviFormer(PackageBasedModel):
# If there are eval packages perform single generation evaluation on them instead of random splits
if self.eval_packages.count() > 0:
ds = []
for reaction in Reaction.objects.filter(
package__in=self.eval_packages.all()
).distinct():
educts = ".".join(
[
FormatConverter.standardize(smile.smiles, remove_stereo=True)
for smile in reaction.educts.all()
]
)
products = ".".join(
[
FormatConverter.standardize(smile.smiles, remove_stereo=True)
for smile in reaction.products.all()
]
)
ds.append(f"{educts}>>{products}")
test_result = self.model.predict_batch([smirk.split(">>")[0] for smirk in ds])
ds = EnviFormerDataset.generate_dataset(Reaction.objects.filter(
package__in=self.eval_packages.all()).distinct())
test_result = self.model.predict_batch(ds.X())
single_gen_result = evaluate_sg(ds, test_result, self.threshold)
self.eval_results = self.compute_averages([single_gen_result])
else:
from enviformer.finetune import fine_tune
ds = self.load_dataset()
n_splits = 20
n_splits = kwargs.get("n_splits", 20)
shuff = ShuffleSplit(n_splits=n_splits, test_size=0.1, random_state=42)
# Single gen eval is done in one loop of train then evaluate rather than storing all n_splits trained models
# this helps reduce the memory footprint.
single_gen_results = []
for split_id, (train_index, test_index) in enumerate(shuff.split(ds)):
train = [ds[i] for i in train_index]
test = [ds[i] for i in test_index]
train = ds[train_index]
test = ds[test_index]
start = datetime.now()
model = fine_tune(train, s.MODEL_DIR, str(split_id), device=s.ENVIFORMER_DEVICE)
model = fine_tune(train.X(), train.y(), s.MODEL_DIR, str(split_id), device=s.ENVIFORMER_DEVICE)
end = datetime.now()
logger.debug(
f"EnviFormer finetuning took {(end - start).total_seconds():.2f} seconds"
)
model.to(s.ENVIFORMER_DEVICE)
test_result = model.predict_batch([smirk.split(">>")[0] for smirk in test])
test_result = model.predict_batch(test.X())
single_gen_results.append(evaluate_sg(test, test_result, self.threshold))
self.eval_results = self.compute_averages(single_gen_results)
@ -3391,31 +3312,15 @@ class EnviFormer(PackageBasedModel):
for pathway in train_pathways:
for reaction in pathway.edges:
reaction = reaction.edge_label
if any(
[
educt in test_educts
for educt in reaction_to_educts[str(reaction.uuid)]
]
):
if any([educt in test_educts for educt in reaction_to_educts[str(reaction.uuid)]]):
overlap += 1
continue
educts = ".".join(
[
FormatConverter.standardize(smile.smiles, remove_stereo=True)
for smile in reaction.educts.all()
]
)
products = ".".join(
[
FormatConverter.standardize(smile.smiles, remove_stereo=True)
for smile in reaction.products.all()
]
)
train_reactions.append(f"{educts}>>{products}")
train_reactions.append(reaction)
train_ds = EnviFormerDataset.generate_dataset(train_reactions)
logging.debug(
f"{overlap} compounds had to be removed from multigen split due to overlap within pathways"
)
model = fine_tune(train_reactions, s.MODEL_DIR, f"mg_{split_id}")
model = fine_tune(train_ds.X(), train_ds.y(), s.MODEL_DIR, f"mg_{split_id}")
multi_gen_results.append(evaluate_mg(model, test_pathways, self.threshold))
self.eval_results.update(

View File

@ -237,6 +237,7 @@ def get_base_context(request, for_user=None) -> Dict[str, Any]:
"enabled_features": s.FLAGS,
"debug": s.DEBUG,
"external_databases": ExternalDatabase.get_databases(),
"site_id": s.MATOMO_SITE_ID,
},
}
@ -891,7 +892,7 @@ def package_model(request, package_uuid, model_uuid):
return JsonResponse(res, safe=False)
else:
app_domain_assessment = current_model.app_domain.assess(stand_smiles)[0]
app_domain_assessment = current_model.app_domain.assess(stand_smiles)
return JsonResponse(app_domain_assessment, safe=False)
context = get_base_context(request)

View File

@ -27,10 +27,11 @@ dependencies = [
"scikit-learn>=1.6.1",
"sentry-sdk[django]>=2.32.0",
"setuptools>=80.8.0",
"polars==1.35.1",
]
[tool.uv.sources]
enviformer = { git = "ssh://git@git.envipath.com/enviPath/enviformer.git", rev = "v0.1.2" }
enviformer = { git = "ssh://git@git.envipath.com/enviPath/enviformer.git", rev = "v0.1.4" }
envipy-plugins = { git = "ssh://git@git.envipath.com/enviPath/enviPy-plugins.git", rev = "v0.1.0" }
envipy-additional-information = { git = "ssh://git@git.envipath.com/enviPath/enviPy-additional-information.git", rev = "v0.1.7"}
envipy-ambit = { git = "ssh://git@git.envipath.com/enviPath/enviPy-ambit.git" }

View File

@ -56,7 +56,7 @@
(function () {
var u = "//matomo.envipath.com/";
_paq.push(['setTrackerUrl', u + 'matomo.php']);
_paq.push(['setSiteId', '10']);
_paq.push(['setSiteId', '{{ meta.site_id }}']);
var d = document, g = d.createElement('script'), s = d.getElementsByTagName('script')[0];
g.async = true;
g.src = u + 'matomo.js';

View File

@ -1,8 +1,10 @@
import os.path
from tempfile import TemporaryDirectory
from django.test import TestCase
from epdb.logic import PackageManager
from epdb.models import Reaction, Compound, User, Rule
from utilities.ml import Dataset
from epdb.models import Reaction, Compound, User, Rule, Package
from utilities.chem import FormatConverter
from utilities.ml import RuleBasedDataset, EnviFormerDataset
class DatasetTest(TestCase):
@ -41,12 +43,108 @@ class DatasetTest(TestCase):
super(DatasetTest, cls).setUpClass()
cls.user = User.objects.get(username="anonymous")
cls.package = PackageManager.create_package(cls.user, "Anon Test Package", "No Desc")
cls.BBD_SUBSET = Package.objects.get(name="Fixtures")
def test_smoke(self):
def test_generate_dataset(self):
"""Test generating dataset does not crash"""
self.generate_rule_dataset()
def test_indexing(self):
"""Test indexing a few different ways to check for crashes"""
ds, reactions, rules = self.generate_rule_dataset()
print(ds[5])
print(ds[2, 5])
print(ds[3:6, 2:8])
print(ds[:2, "structure_id"])
def test_add_rows(self):
"""Test adding one row and adding multiple rows"""
ds, reactions, rules = self.generate_rule_dataset()
ds.add_row(list(ds.df.row(1)))
ds.add_rows([list(ds.df.row(i)) for i in range(5)])
def test_times_triggered(self):
"""Check getting times triggered for a rule id"""
ds, reactions, rules = self.generate_rule_dataset()
print(ds.times_triggered(rules[0].uuid))
def test_block_indices(self):
"""Test the usages of _block_indices"""
ds, reactions, rules = self.generate_rule_dataset()
print(ds.struct_features())
print(ds.triggered())
print(ds.observed())
def test_structure_id(self):
"""Check getting a structure id from row index"""
ds, reactions, rules = self.generate_rule_dataset()
print(ds.structure_id(0))
def test_x(self):
"""Test getting X portion of the dataframe"""
ds, reactions, rules = self.generate_rule_dataset()
print(ds.X().df.head())
def test_trig(self):
"""Test getting the triggered portion of the dataframe"""
ds, reactions, rules = self.generate_rule_dataset()
print(ds.trig().df.head())
def test_y(self):
"""Test getting the Y portion of the dataframe"""
ds, reactions, rules = self.generate_rule_dataset()
print(ds.y().df.head())
def test_classification_dataset(self):
"""Test making the classification dataset"""
ds, reactions, rules = self.generate_rule_dataset()
compounds = [c.default_structure for c in Compound.objects.filter(package=self.BBD_SUBSET)]
class_ds, products = ds.classification_dataset(compounds, rules)
print(class_ds.df.head(5))
print(products[:5])
def test_extra_features(self):
reactions = [r for r in Reaction.objects.filter(package=self.BBD_SUBSET)]
applicable_rules = [r for r in Rule.objects.filter(package=self.BBD_SUBSET)]
ds = RuleBasedDataset.generate_dataset(reactions, applicable_rules, feat_funcs=[FormatConverter.maccs, FormatConverter.morgan])
print(ds.shape)
def test_to_arff(self):
"""Test exporting the arff version of the dataset"""
ds, reactions, rules = self.generate_rule_dataset()
ds.to_arff("dataset_arff_test.arff")
def test_save_load(self):
"""Test saving and loading dataset"""
with TemporaryDirectory() as tmpdir:
ds, reactions, rules = self.generate_rule_dataset()
ds.save(os.path.join(tmpdir, "save_dataset.pkl"))
ds_loaded = RuleBasedDataset.load(os.path.join(tmpdir, "save_dataset.pkl"))
self.assertTrue(ds.df.equals(ds_loaded.df))
def test_dataset_example(self):
"""Test with a concrete example checking dataset size"""
reactions = [r for r in Reaction.objects.filter(package=self.package)]
applicable_rules = [self.rule1]
ds = Dataset.generate_dataset(reactions, applicable_rules)
ds = RuleBasedDataset.generate_dataset(reactions, applicable_rules)
self.assertEqual(len(ds.y()), 1)
self.assertEqual(sum(ds.y()[0]), 1)
self.assertEqual(ds.y().df.item(), 1)
def test_enviformer_dataset(self):
ds, reactions = self.generate_enviformer_dataset()
print(ds.X().head())
print(ds.y().head())
def generate_rule_dataset(self):
"""Generate a RuleBasedDataset from test package data"""
reactions = [r for r in Reaction.objects.filter(package=self.BBD_SUBSET)]
applicable_rules = [r for r in Rule.objects.filter(package=self.BBD_SUBSET)]
ds = RuleBasedDataset.generate_dataset(reactions, applicable_rules)
return ds, reactions, applicable_rules
def generate_enviformer_dataset(self):
reactions = [r for r in Reaction.objects.filter(package=self.BBD_SUBSET)]
ds = EnviFormerDataset.generate_dataset(reactions)
return ds, reactions

View File

@ -42,13 +42,11 @@ class EnviFormerTest(TestCase):
threshold = float(0.5)
data_package_objs = [self.BBD_SUBSET]
eval_packages_objs = [self.BBD_SUBSET]
mod = EnviFormer.create(
self.package, data_package_objs, eval_packages_objs, threshold=threshold
)
mod = EnviFormer.create(self.package, data_package_objs, threshold=threshold)
mod.build_dataset()
mod.build_model()
mod.evaluate_model(True, eval_packages_objs)
mod.evaluate_model(True, eval_packages_objs, n_splits=2)
mod.predict("CCN(CC)C(=O)C1=CC(=CC=C1)C")
@ -57,12 +55,9 @@ class EnviFormerTest(TestCase):
with self.settings(MODEL_DIR=tmpdir):
threshold = float(0.5)
data_package_objs = [self.BBD_SUBSET]
eval_packages_objs = [self.BBD_SUBSET]
mods = []
for _ in range(4):
mod = EnviFormer.create(
self.package, data_package_objs, eval_packages_objs, threshold=threshold
)
mod = EnviFormer.create(self.package, data_package_objs, threshold=threshold)
mod.build_dataset()
mod.build_model()
mods.append(mod)
@ -73,15 +68,11 @@ class EnviFormerTest(TestCase):
# Test pathway prediction
times = [measure_predict(mods[1], self.BBD_SUBSET.pathways[0].pk) for _ in range(5)]
print(
f"First pathway prediction took {times[0]} seconds, subsequent ones took {times[1:]}"
)
print(f"First pathway prediction took {times[0]} seconds, subsequent ones took {times[1:]}")
# Test eviction by performing three prediction with every model, twice.
times = defaultdict(list)
for _ in range(
2
): # Eviction should cause the second iteration here to have to reload the models
for _ in range(2): # Eviction should cause the second iteration here to have to reload the models
for mod in mods:
for _ in range(3):
times[mod.pk].append(measure_predict(mod))

View File

@ -4,7 +4,7 @@ import numpy as np
from django.test import TestCase
from epdb.logic import PackageManager
from epdb.models import User, MLRelativeReasoning, Package
from epdb.models import User, MLRelativeReasoning, Package, RuleBasedRelativeReasoning
class ModelTest(TestCase):
@ -17,7 +17,7 @@ class ModelTest(TestCase):
cls.package = PackageManager.create_package(cls.user, "Anon Test Package", "No Desc")
cls.BBD_SUBSET = Package.objects.get(name="Fixtures")
def test_smoke(self):
def test_mlrr(self):
with TemporaryDirectory() as tmpdir:
with self.settings(MODEL_DIR=tmpdir):
threshold = float(0.5)
@ -35,21 +35,9 @@ class ModelTest(TestCase):
description="Created MLRelativeReasoning in Testcase",
)
# mod = RuleBasedRelativeReasoning.create(
# self.package,
# rule_package_objs,
# data_package_objs,
# eval_packages_objs,
# threshold=threshold,
# min_count=5,
# max_count=0,
# name='ECC - BBD - 0.5',
# description='Created MLRelativeReasoning in Testcase',
# )
mod.build_dataset()
mod.build_model()
mod.evaluate_model(True, eval_packages_objs)
mod.evaluate_model(True, eval_packages_objs, n_splits=2)
results = mod.predict("CCN(CC)C(=O)C1=CC(=CC=C1)C")
@ -70,3 +58,57 @@ class ModelTest(TestCase):
# from pprint import pprint
# pprint(mod.eval_results)
def test_applicability(self):
with TemporaryDirectory() as tmpdir:
with self.settings(MODEL_DIR=tmpdir):
threshold = float(0.5)
rule_package_objs = [self.BBD_SUBSET]
data_package_objs = [self.BBD_SUBSET]
eval_packages_objs = [self.BBD_SUBSET]
mod = MLRelativeReasoning.create(
self.package,
rule_package_objs,
data_package_objs,
threshold=threshold,
name="ECC - BBD - 0.5",
description="Created MLRelativeReasoning in Testcase",
build_app_domain=True, # To test the applicability domain this must be True
app_domain_num_neighbours=5,
app_domain_local_compatibility_threshold=0.5,
app_domain_reliability_threshold=0.5,
)
mod.build_dataset()
mod.build_model()
mod.evaluate_model(True, eval_packages_objs, n_splits=2)
results = mod.predict("CCN(CC)C(=O)C1=CC(=CC=C1)C")
def test_rbrr(self):
with TemporaryDirectory() as tmpdir:
with self.settings(MODEL_DIR=tmpdir):
threshold = float(0.5)
rule_package_objs = [self.BBD_SUBSET]
data_package_objs = [self.BBD_SUBSET]
eval_packages_objs = [self.BBD_SUBSET]
mod = RuleBasedRelativeReasoning.create(
self.package,
rule_package_objs,
data_package_objs,
threshold=threshold,
min_count=5,
max_count=0,
name='ECC - BBD - 0.5',
description='Created MLRelativeReasoning in Testcase',
)
mod.build_dataset()
mod.build_model()
mod.evaluate_model(True, eval_packages_objs, n_splits=2)
results = mod.predict("CCN(CC)C(=O)C1=CC(=CC=C1)C")

View File

@ -7,7 +7,7 @@ from typing import List, Optional, Dict, TYPE_CHECKING
from indigo import Indigo, IndigoException, IndigoObject
from indigo.renderer import IndigoRenderer
from rdkit import Chem, rdBase
from rdkit.Chem import MACCSkeys, Descriptors
from rdkit.Chem import MACCSkeys, Descriptors, rdFingerprintGenerator
from rdkit.Chem import rdChemReactions
from rdkit.Chem.Draw import rdMolDraw2D
from rdkit.Chem.MolStandardize import rdMolStandardize
@ -107,6 +107,13 @@ class FormatConverter(object):
bitvec = MACCSkeys.GenMACCSKeys(mol)
return bitvec.ToList()
@staticmethod
def morgan(smiles, radius=3, fpSize=2048):
finger_gen = rdFingerprintGenerator.GetMorganGenerator(radius=radius, fpSize=fpSize)
mol = Chem.MolFromSmiles(smiles)
fp = finger_gen.GetFingerprint(mol)
return fp.ToList()
@staticmethod
def get_functional_groups(smiles: str) -> List[str]:
res = list()

View File

@ -5,11 +5,14 @@ import logging
from collections import defaultdict
from datetime import datetime
from pathlib import Path
from typing import List, Dict, Set, Tuple, TYPE_CHECKING
from typing import List, Dict, Set, Tuple, TYPE_CHECKING, Callable
from abc import ABC, abstractmethod
import networkx as nx
import numpy as np
from envipy_plugins import Descriptor
from numpy.random import default_rng
import polars as pl
from sklearn.base import BaseEstimator, ClassifierMixin
from sklearn.decomposition import PCA
from sklearn.dummy import DummyClassifier
@ -26,70 +29,281 @@ if TYPE_CHECKING:
from epdb.models import Rule, CompoundStructure, Reaction
class Dataset:
def __init__(
self, columns: List[str], num_labels: int, data: List[List[str | int | float]] = None
):
self.columns: List[str] = columns
self.num_labels: int = num_labels
if data is None:
self.data: List[List[str | int | float]] = list()
class Dataset(ABC):
def __init__(self, columns: List[str] = None, data: List[List[str | int | float]] | pl.DataFrame = None):
if isinstance(data, pl.DataFrame): # Allows for re-creation of self in cases like indexing with __getitem__
self.df = data
else:
self.data = data
# Build either an empty dataframe with columns or fill it with list of list data
if data is not None and len(columns) != len(data[0]):
raise ValueError(f"Header and Data are not aligned {len(columns)} columns vs. {len(data[0])} columns")
if columns is None:
raise ValueError("Columns can't be None if data is not already a DataFrame")
self.df = pl.DataFrame(data=data, schema=columns, orient="row", infer_schema_length=None)
self.num_features: int = len(columns) - self.num_labels
self._struct_features: Tuple[int, int] = self._block_indices("feature_")
self._triggered: Tuple[int, int] = self._block_indices("trig_")
self._observed: Tuple[int, int] = self._block_indices("obs_")
def add_rows(self, rows: List[List[str | int | float]]):
"""Add rows to the dataset. Extends the polars dataframe stored in self"""
if len(self.columns) != len(rows[0]):
raise ValueError(f"Header and Data are not aligned {len(self.columns)} columns vs. {len(rows[0])} columns")
new_rows = pl.DataFrame(data=rows, schema=self.columns, orient="row", infer_schema_length=None)
self.df.extend(new_rows)
def _block_indices(self, prefix) -> Tuple[int, int]:
def add_row(self, row: List[str | int | float]):
"""See add_rows"""
self.add_rows([row])
def block_indices(self, prefix) -> List[int]:
"""Find the indexes in column labels that has the prefix"""
indices: List[int] = []
for i, feature in enumerate(self.columns):
if feature.startswith(prefix):
indices.append(i)
return indices
return min(indices), max(indices)
@property
def columns(self) -> List[str]:
"""Use the polars dataframe columns"""
return self.df.columns
def structure_id(self):
return self.data[0][0]
@property
def shape(self):
return self.df.shape
def add_row(self, row: List[str | int | float]):
if len(self.columns) != len(row):
raise ValueError(f"Header and Data are not aligned {len(self.columns)} vs. {len(row)}")
self.data.append(row)
@abstractmethod
def X(self, **kwargs):
pass
def times_triggered(self, rule_uuid) -> int:
idx = self.columns.index(f"trig_{rule_uuid}")
@abstractmethod
def y(self, **kwargs):
pass
times_triggered = 0
for row in self.data:
if row[idx] == 1:
times_triggered += 1
return times_triggered
def struct_features(self) -> Tuple[int, int]:
return self._struct_features
def triggered(self) -> Tuple[int, int]:
return self._triggered
def observed(self) -> Tuple[int, int]:
return self._observed
def at(self, position: int) -> Dataset:
return Dataset(self.columns, self.num_labels, [self.data[position]])
def limit(self, limit: int) -> Dataset:
return Dataset(self.columns, self.num_labels, self.data[:limit])
@staticmethod
@abstractmethod
def generate_dataset(reactions, *args, **kwargs):
pass
def __iter__(self):
return (self.at(i) for i, _ in enumerate(self.data))
"""Use polars iter_rows for iterating over the dataset"""
return self.df.iter_rows()
def __getitem__(self, item):
"""Item is passed to polars allowing for advanced indexing.
See https://docs.pola.rs/api/python/stable/reference/dataframe/api/polars.DataFrame.__getitem__.html#polars.DataFrame.__getitem__"""
res = self.df[item]
if isinstance(res, pl.DataFrame): # If we get a dataframe back from indexing make new self with res dataframe
return self.__class__(data=res)
else: # If we don't get a dataframe back (likely base type, int, str, float etc.) return the item
return res
def save(self, path: "Path | str"):
import pickle
with open(path, "wb") as fh:
pickle.dump(self, fh)
@staticmethod
def load(path: "str | Path") -> "Dataset":
import pickle
return pickle.load(open(path, "rb"))
def to_numpy(self):
return self.df.to_numpy()
def __repr__(self):
return (
f"<{self.__class__.__name__} #rows={len(self.df)} #cols={len(self.columns)}>"
)
def __len__(self):
return len(self.df)
def iter_rows(self, named=False):
return self.df.iter_rows(named=named)
def filter(self, *predicates, **constraints):
return self.__class__(data=self.df.filter(*predicates, **constraints))
def select(self, *exprs, **named_exprs):
return self.__class__(data=self.df.select(*exprs, **named_exprs))
def with_columns(self, *exprs, **name_exprs):
return self.__class__(data=self.df.with_columns(*exprs, **name_exprs))
def sort(self, by, *more_by, descending=False, nulls_last=False, multithreaded=True, maintain_order=False):
return self.__class__(data=self.df.sort(by, *more_by, descending=descending, nulls_last=nulls_last,
multithreaded=multithreaded, maintain_order=maintain_order))
def item(self, row=None, column=None):
return self.df.item(row, column)
def fill_nan(self, value):
return self.__class__(data=self.df.fill_nan(value))
@property
def height(self):
return self.df.height
class RuleBasedDataset(Dataset):
def __init__(self, num_labels=None, columns=None, data=None):
super().__init__(columns, data)
# Calculating num_labels allows functions like getitem to be in the base Dataset as it unifies the init.
self.num_labels: int = num_labels if num_labels else sum([1 for c in self.columns if "obs_" in c])
# Pre-calculate the ids of columns for features/labels, useful later in X and y
self._struct_features: List[int] = self.block_indices("feature_")
self._triggered: List[int] = self.block_indices("trig_")
self._observed: List[int] = self.block_indices("obs_")
self.feature_cols: List[int] = self._struct_features + self._triggered
self.num_features: int = len(self.feature_cols)
self.has_probs = False
def times_triggered(self, rule_uuid) -> int:
"""Count how many times a rule is triggered by the number of rows with one in the rules trig column"""
return self.df.filter(pl.col(f"trig_{rule_uuid}") == 1).height
def struct_features(self) -> List[int]:
return self._struct_features
def triggered(self) -> List[int]:
return self._triggered
def observed(self) -> List[int]:
return self._observed
def structure_id(self, index: int):
"""Get the UUID of a compound"""
return self.item(index, "structure_id")
def X(self, exclude_id_col=True, na_replacement=0):
"""Get all the feature and trig columns"""
_col_ids = self.feature_cols
if not exclude_id_col:
_col_ids = [0] + _col_ids
res = self[:, _col_ids]
if na_replacement is not None:
res.df = res.df.fill_null(na_replacement)
return res
def trig(self, na_replacement=0):
"""Get all the trig columns"""
res = self[:, self._triggered]
if na_replacement is not None:
res.df = res.df.fill_null(na_replacement)
return res
def y(self, na_replacement=0):
"""Get all the obs columns"""
res = self[:, self._observed]
if na_replacement is not None:
res.df = res.df.fill_null(na_replacement)
return res
@staticmethod
def generate_dataset(reactions, applicable_rules, educts_only=True, feat_funcs: List["Callable | Descriptor"]=None):
if feat_funcs is None:
feat_funcs = [FormatConverter.maccs]
_structures = set() # Get all the structures
for r in reactions:
_structures.update(r.educts.all())
if not educts_only:
_structures.update(r.products.all())
compounds = sorted(_structures, key=lambda x: x.url)
triggered: Dict[str, Set[str]] = defaultdict(set)
observed: Set[str] = set()
# Apply rules on collected compounds and store tps
for i, comp in enumerate(compounds):
logger.debug(f"{i + 1}/{len(compounds)}...")
for rule in applicable_rules:
product_sets = rule.apply(comp.smiles)
if len(product_sets) == 0:
continue
key = f"{rule.uuid} + {comp.uuid}"
if key in triggered:
logger.info(f"{key} already present. Duplicate reaction?")
for prod_set in product_sets:
for smi in prod_set:
try:
smi = FormatConverter.standardize(smi, remove_stereo=True)
except Exception:
logger.debug(f"Standardizing SMILES failed for {smi}")
triggered[key].add(smi)
for i, r in enumerate(reactions):
logger.debug(f"{i + 1}/{len(reactions)}...")
if len(r.educts.all()) != 1:
logger.debug(f"Skipping {r.url} as it has {len(r.educts.all())} substrates!")
continue
for comp in r.educts.all():
for rule in applicable_rules:
key = f"{rule.uuid} + {comp.uuid}"
if key not in triggered:
continue
# standardize products from reactions for comparison
standardized_products = []
for cs in r.products.all():
smi = cs.smiles
try:
smi = FormatConverter.standardize(smi, remove_stereo=True)
except Exception as e:
logger.debug(f"Standardizing SMILES failed for {smi}")
standardized_products.append(smi)
if len(set(standardized_products).difference(triggered[key])) == 0:
observed.add(key)
feat_columns = []
for feat_func in feat_funcs:
if isinstance(feat_func, Descriptor):
feats = feat_func.get_molecule_descriptors(compounds[0].smiles)
else:
feats = feat_func(compounds[0].smiles)
start_i = len(feat_columns)
feat_columns.extend([f"feature_{start_i + i}" for i, _ in enumerate(feats)])
ds_columns = (["structure_id"] +
feat_columns +
[f"trig_{r.uuid}" for r in applicable_rules] +
[f"obs_{r.uuid}" for r in applicable_rules])
rows = []
for i, comp in enumerate(compounds):
# Features
feats = []
for feat_func in feat_funcs:
if isinstance(feat_func, Descriptor):
feat = feat_func.get_molecule_descriptors(comp.smiles)
else:
feat = feat_func(comp.smiles)
feats.extend(feat)
trig = []
obs = []
for rule in applicable_rules:
key = f"{rule.uuid} + {comp.uuid}"
# Check triggered
if key in triggered:
trig.append(1)
else:
trig.append(0)
# Check obs
if key in observed:
obs.append(1)
elif key not in triggered:
obs.append(None)
else:
obs.append(0)
rows.append([str(comp.uuid)] + feats + trig + obs)
ds = RuleBasedDataset(len(applicable_rules), ds_columns, data=rows)
return ds
def classification_dataset(
self, structures: List[str | "CompoundStructure"], applicable_rules: List["Rule"]
) -> Tuple[Dataset, List[List[PredictionResult]]]:
) -> Tuple[RuleBasedDataset, List[List[PredictionResult]]]:
classify_data = []
classify_products = []
for struct in structures:
@ -113,186 +327,18 @@ class Dataset:
else:
trig.append(0)
prods.append([])
classify_data.append([struct_id] + features + trig + ([-1] * len(trig)))
new_row = [struct_id] + features + trig + ([-1] * len(trig))
if self.has_probs:
new_row += [-1] * len(trig)
classify_data.append(new_row)
classify_products.append(prods)
ds = RuleBasedDataset(len(applicable_rules), self.columns, data=classify_data)
return ds, classify_products
return Dataset(
columns=self.columns, num_labels=self.num_labels, data=classify_data
), classify_products
@staticmethod
def generate_dataset(
reactions: List["Reaction"], applicable_rules: List["Rule"], educts_only: bool = True
) -> Dataset:
_structures = set()
for r in reactions:
for e in r.educts.all():
_structures.add(e)
if not educts_only:
for e in r.products:
_structures.add(e)
compounds = sorted(_structures, key=lambda x: x.url)
triggered: Dict[str, Set[str]] = defaultdict(set)
observed: Set[str] = set()
# Apply rules on collected compounds and store tps
for i, comp in enumerate(compounds):
logger.debug(f"{i + 1}/{len(compounds)}...")
for rule in applicable_rules:
product_sets = rule.apply(comp.smiles)
if len(product_sets) == 0:
continue
key = f"{rule.uuid} + {comp.uuid}"
if key in triggered:
logger.info(f"{key} already present. Duplicate reaction?")
for prod_set in product_sets:
for smi in prod_set:
try:
smi = FormatConverter.standardize(smi, remove_stereo=True)
except Exception:
# :shrug:
logger.debug(f"Standardizing SMILES failed for {smi}")
pass
triggered[key].add(smi)
for i, r in enumerate(reactions):
logger.debug(f"{i + 1}/{len(reactions)}...")
if len(r.educts.all()) != 1:
logger.debug(f"Skipping {r.url} as it has {len(r.educts.all())} substrates!")
continue
for comp in r.educts.all():
for rule in applicable_rules:
key = f"{rule.uuid} + {comp.uuid}"
if key not in triggered:
continue
# standardize products from reactions for comparison
standardized_products = []
for cs in r.products.all():
smi = cs.smiles
try:
smi = FormatConverter.standardize(smi, remove_stereo=True)
except Exception as e:
# :shrug:
logger.debug(f"Standardizing SMILES failed for {smi}")
pass
standardized_products.append(smi)
if len(set(standardized_products).difference(triggered[key])) == 0:
observed.add(key)
else:
pass
ds = None
for i, comp in enumerate(compounds):
# Features
feat = FormatConverter.maccs(comp.smiles)
trig = []
obs = []
for rule in applicable_rules:
key = f"{rule.uuid} + {comp.uuid}"
# Check triggered
if key in triggered:
trig.append(1)
else:
trig.append(0)
# Check obs
if key in observed:
obs.append(1)
elif key not in triggered:
obs.append(None)
else:
obs.append(0)
if ds is None:
header = (
["structure_id"]
+ [f"feature_{i}" for i, _ in enumerate(feat)]
+ [f"trig_{r.uuid}" for r in applicable_rules]
+ [f"obs_{r.uuid}" for r in applicable_rules]
)
ds = Dataset(header, len(applicable_rules))
ds.add_row([str(comp.uuid)] + feat + trig + obs)
return ds
def X(self, exclude_id_col=True, na_replacement=0):
res = self.__getitem__(
(slice(None), slice(1 if exclude_id_col else 0, len(self.columns) - self.num_labels))
)
if na_replacement is not None:
res = [[x if x is not None else na_replacement for x in row] for row in res]
return res
def trig(self, na_replacement=0):
res = self.__getitem__((slice(None), slice(self._triggered[0], self._triggered[1])))
if na_replacement is not None:
res = [[x if x is not None else na_replacement for x in row] for row in res]
return res
def y(self, na_replacement=0):
res = self.__getitem__((slice(None), slice(len(self.columns) - self.num_labels, None)))
if na_replacement is not None:
res = [[x if x is not None else na_replacement for x in row] for row in res]
return res
def __getitem__(self, key):
if not isinstance(key, tuple):
raise TypeError("Dataset must be indexed with dataset[rows, columns]")
row_key, col_key = key
# Normalize rows
if isinstance(row_key, int):
rows = [self.data[row_key]]
else:
rows = self.data[row_key]
# Normalize columns
if isinstance(col_key, int):
res = [row[col_key] for row in rows]
else:
res = [
[row[i] for i in range(*col_key.indices(len(row)))]
if isinstance(col_key, slice)
else [row[i] for i in col_key]
for row in rows
]
return res
def save(self, path: "Path"):
import pickle
with open(path, "wb") as fh:
pickle.dump(self, fh)
@staticmethod
def load(path: "Path") -> "Dataset":
import pickle
return pickle.load(open(path, "rb"))
def add_probs(self, probs):
col_names = [f"prob_{self.columns[r_id].split('_')[-1]}" for r_id in self._observed]
self.df = self.df.with_columns(*[pl.Series(name, probs[:, j]) for j, name in enumerate(col_names)])
self.has_probs = True
def to_arff(self, path: "Path"):
arff = f"@relation 'enviPy-dataset: -C {self.num_labels}'\n"
@ -304,7 +350,7 @@ class Dataset:
arff += f"@attribute {c} {{0,1}}\n"
arff += "\n@data\n"
for d in self.data:
for d in self:
ys = ",".join([str(v if v is not None else "?") for v in d[-self.num_labels :]])
xs = ",".join([str(v if v is not None else "?") for v in d[: self.num_features]])
arff += f"{ys},{xs}\n"
@ -313,10 +359,40 @@ class Dataset:
fh.write(arff)
fh.flush()
def __repr__(self):
return (
f"<Dataset #rows={len(self.data)} #cols={len(self.columns)} #labels={self.num_labels}>"
)
class EnviFormerDataset(Dataset):
def __init__(self, columns=None, data=None):
super().__init__(columns, data)
def X(self):
"""Return the educts"""
return self["educts"]
def y(self):
"""Return the products"""
return self["products"]
@staticmethod
def generate_dataset(reactions, *args, **kwargs):
# Standardise reactions for the training data
stereo = kwargs.get("stereo", False)
rows = []
for reaction in reactions:
e = ".".join(
[
FormatConverter.standardize(smile.smiles, remove_stereo=not stereo)
for smile in reaction.educts.all()
]
)
p = ".".join(
[
FormatConverter.standardize(smile.smiles, remove_stereo=not stereo)
for smile in reaction.products.all()
]
)
rows.append([e, p])
ds = EnviFormerDataset(["educts", "products"], rows)
return ds
class SparseLabelECC(BaseEstimator, ClassifierMixin):
@ -498,7 +574,7 @@ class EnsembleClassifierChain:
self.classifiers = []
if self.num_labels is None:
self.num_labels = len(Y[0])
self.num_labels = Y.shape[1]
for p in range(self.num_chains):
logger.debug(f"{datetime.now()} fitting {p + 1}/{self.num_chains}")
@ -529,7 +605,7 @@ class RelativeReasoning:
def fit(self, X, Y):
n_instances = len(Y)
n_attributes = len(Y[0])
n_attributes = Y.shape[1]
for i in range(n_attributes):
for j in range(n_attributes):
@ -541,8 +617,8 @@ class RelativeReasoning:
countboth = 0
for k in range(n_instances):
vi = Y[k][i]
vj = Y[k][j]
vi = Y[k, i]
vj = Y[k, j]
if vi is None or vj is None:
continue
@ -598,7 +674,7 @@ class ApplicabilityDomainPCA(PCA):
self.min_vals = None
self.max_vals = None
def build(self, train_dataset: "Dataset"):
def build(self, train_dataset: "RuleBasedDataset"):
# transform
X_scaled = self.scaler.fit_transform(train_dataset.X())
# fit pca
@ -612,7 +688,7 @@ class ApplicabilityDomainPCA(PCA):
instances_pca = self.transform(instances_scaled)
return instances_pca
def is_applicable(self, classify_instances: "Dataset"):
def is_applicable(self, classify_instances: "RuleBasedDataset"):
instances_pca = self.__transform(classify_instances.X())
is_applicable = []

184
uv.lock generated
View File

@ -1,6 +1,10 @@
version = 1
revision = 3
revision = 2
requires-python = ">=3.12"
resolution-markers = [
"sys_platform == 'linux' or sys_platform == 'win32'",
"sys_platform != 'linux' and sys_platform != 'win32'",
]
[[package]]
name = "aiohappyeyeballs"
@ -176,6 +180,19 @@ wheels = [
{ url = "https://files.pythonhosted.org/packages/c9/af/0dcccc7fdcdf170f9a1585e5e96b6fb0ba1749ef6be8c89a6202284759bd/celery-5.5.3-py3-none-any.whl", hash = "sha256:0b5761a07057acee94694464ca482416b959568904c9dfa41ce8413a7d65d525", size = 438775, upload-time = "2025-06-01T11:08:09.94Z" },
]
[[package]]
name = "celery-stubs"
version = "0.1.3"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "mypy" },
{ name = "typing-extensions" },
]
sdist = { url = "https://files.pythonhosted.org/packages/98/14/b853ada8706a3a301396566b6dd405d1cbb24bff756236a12a01dbe766a4/celery-stubs-0.1.3.tar.gz", hash = "sha256:0fb5345820f8a2bd14e6ffcbef2d10181e12e40f8369f551d7acc99d8d514919", size = 46583, upload-time = "2023-02-10T02:20:11.837Z" }
wheels = [
{ url = "https://files.pythonhosted.org/packages/1c/7a/4ab2347d13f1f59d10a7337feb9beb002664119f286036785284c6bec150/celery_stubs-0.1.3-py3-none-any.whl", hash = "sha256:dfb9ad27614a8af028b2055bb4a4ae99ca5e9a8d871428a506646d62153218d7", size = 89085, upload-time = "2023-02-10T02:20:09.409Z" },
]
[[package]]
name = "certifi"
version = "2025.10.5"
@ -525,13 +542,14 @@ wheels = [
[[package]]
name = "enviformer"
version = "0.1.0"
source = { git = "ssh://git@git.envipath.com/enviPath/enviformer.git?rev=v0.1.2#3f28f60cfa1df814cf7559303b5130933efa40ae" }
source = { git = "ssh://git@git.envipath.com/enviPath/enviformer.git?rev=v0.1.4#7094be5767748fd63d4a84a5d71f06cf02ba07f3" }
dependencies = [
{ name = "joblib" },
{ name = "lightning" },
{ name = "pytorch-lightning" },
{ name = "scikit-learn" },
{ name = "torch" },
{ name = "torch", version = "2.8.0", source = { registry = "https://pypi.org/simple" }, marker = "sys_platform != 'linux' and sys_platform != 'win32'" },
{ name = "torch", version = "2.8.0+cu128", source = { registry = "https://download.pytorch.org/whl/cu128" }, marker = "sys_platform == 'linux' or sys_platform == 'win32'" },
]
[[package]]
@ -546,7 +564,6 @@ dependencies = [
{ name = "django-ninja" },
{ name = "django-oauth-toolkit" },
{ name = "django-polymorphic" },
{ name = "django-stubs" },
{ name = "enviformer" },
{ name = "envipy-additional-information" },
{ name = "envipy-ambit" },
@ -554,6 +571,7 @@ dependencies = [
{ name = "epam-indigo" },
{ name = "gunicorn" },
{ name = "networkx" },
{ name = "polars" },
{ name = "psycopg2-binary" },
{ name = "python-dotenv" },
{ name = "rdkit" },
@ -566,6 +584,8 @@ dependencies = [
[package.optional-dependencies]
dev = [
{ name = "celery-stubs" },
{ name = "django-stubs" },
{ name = "poethepoet" },
{ name = "pre-commit" },
{ name = "ruff" },
@ -577,15 +597,16 @@ ms-login = [
[package.metadata]
requires-dist = [
{ name = "celery", specifier = ">=5.5.2" },
{ name = "celery-stubs", marker = "extra == 'dev'", specifier = "==0.1.3" },
{ name = "django", specifier = ">=5.2.1" },
{ name = "django-extensions", specifier = ">=4.1" },
{ name = "django-model-utils", specifier = ">=5.0.0" },
{ name = "django-ninja", specifier = ">=1.4.1" },
{ name = "django-oauth-toolkit", specifier = ">=3.0.1" },
{ name = "django-polymorphic", specifier = ">=4.1.0" },
{ name = "django-stubs", specifier = ">=5.2.4" },
{ name = "enviformer", git = "ssh://git@git.envipath.com/enviPath/enviformer.git?rev=v0.1.2" },
{ name = "envipy-additional-information", git = "ssh://git@git.envipath.com/enviPath/enviPy-additional-information.git?rev=v0.1.4" },
{ name = "django-stubs", marker = "extra == 'dev'", specifier = ">=5.2.4" },
{ name = "enviformer", git = "ssh://git@git.envipath.com/enviPath/enviformer.git?rev=v0.1.4" },
{ name = "envipy-additional-information", git = "ssh://git@git.envipath.com/enviPath/enviPy-additional-information.git?rev=v0.1.7" },
{ name = "envipy-ambit", git = "ssh://git@git.envipath.com/enviPath/enviPy-ambit.git" },
{ name = "envipy-plugins", git = "ssh://git@git.envipath.com/enviPath/enviPy-plugins.git?rev=v0.1.0" },
{ name = "epam-indigo", specifier = ">=1.30.1" },
@ -593,6 +614,7 @@ requires-dist = [
{ name = "msal", marker = "extra == 'ms-login'", specifier = ">=1.33.0" },
{ name = "networkx", specifier = ">=3.4.2" },
{ name = "poethepoet", marker = "extra == 'dev'", specifier = ">=0.37.0" },
{ name = "polars", specifier = "==1.35.1" },
{ name = "pre-commit", marker = "extra == 'dev'", specifier = ">=4.3.0" },
{ name = "psycopg2-binary", specifier = ">=2.9.10" },
{ name = "python-dotenv", specifier = ">=1.1.0" },
@ -608,8 +630,8 @@ provides-extras = ["ms-login", "dev"]
[[package]]
name = "envipy-additional-information"
version = "0.1.0"
source = { git = "ssh://git@git.envipath.com/enviPath/enviPy-additional-information.git?rev=v0.1.4#4da604090bf7cf1f3f552d69485472dbc623030a" }
version = "0.1.7"
source = { git = "ssh://git@git.envipath.com/enviPath/enviPy-additional-information.git?rev=v0.1.7#d02a5d5e6a931e6565ea86127813acf7e4b33a30" }
dependencies = [
{ name = "pydantic" },
]
@ -865,7 +887,8 @@ dependencies = [
{ name = "packaging" },
{ name = "pytorch-lightning" },
{ name = "pyyaml" },
{ name = "torch" },
{ name = "torch", version = "2.8.0", source = { registry = "https://pypi.org/simple" }, marker = "sys_platform != 'linux' and sys_platform != 'win32'" },
{ name = "torch", version = "2.8.0+cu128", source = { registry = "https://download.pytorch.org/whl/cu128" }, marker = "sys_platform == 'linux' or sys_platform == 'win32'" },
{ name = "torchmetrics" },
{ name = "tqdm" },
{ name = "typing-extensions" },
@ -1074,6 +1097,47 @@ wheels = [
{ url = "https://files.pythonhosted.org/packages/b7/da/7d22601b625e241d4f23ef1ebff8acfc60da633c9e7e7922e24d10f592b3/multidict-6.7.0-py3-none-any.whl", hash = "sha256:394fc5c42a333c9ffc3e421a4c85e08580d990e08b99f6bf35b4132114c5dcb3", size = 12317, upload-time = "2025-10-06T14:52:29.272Z" },
]
[[package]]
name = "mypy"
version = "1.18.2"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "mypy-extensions" },
{ name = "pathspec" },
{ name = "typing-extensions" },
]
sdist = { url = "https://files.pythonhosted.org/packages/c0/77/8f0d0001ffad290cef2f7f216f96c814866248a0b92a722365ed54648e7e/mypy-1.18.2.tar.gz", hash = "sha256:06a398102a5f203d7477b2923dda3634c36727fa5c237d8f859ef90c42a9924b", size = 3448846, upload-time = "2025-09-19T00:11:10.519Z" }
wheels = [
{ url = "https://files.pythonhosted.org/packages/07/06/dfdd2bc60c66611dd8335f463818514733bc763e4760dee289dcc33df709/mypy-1.18.2-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:33eca32dd124b29400c31d7cf784e795b050ace0e1f91b8dc035672725617e34", size = 12908273, upload-time = "2025-09-19T00:10:58.321Z" },
{ url = "https://files.pythonhosted.org/packages/81/14/6a9de6d13a122d5608e1a04130724caf9170333ac5a924e10f670687d3eb/mypy-1.18.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:a3c47adf30d65e89b2dcd2fa32f3aeb5e94ca970d2c15fcb25e297871c8e4764", size = 11920910, upload-time = "2025-09-19T00:10:20.043Z" },
{ url = "https://files.pythonhosted.org/packages/5f/a9/b29de53e42f18e8cc547e38daa9dfa132ffdc64f7250e353f5c8cdd44bee/mypy-1.18.2-cp312-cp312-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:5d6c838e831a062f5f29d11c9057c6009f60cb294fea33a98422688181fe2893", size = 12465585, upload-time = "2025-09-19T00:10:33.005Z" },
{ url = "https://files.pythonhosted.org/packages/77/ae/6c3d2c7c61ff21f2bee938c917616c92ebf852f015fb55917fd6e2811db2/mypy-1.18.2-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:01199871b6110a2ce984bde85acd481232d17413868c9807e95c1b0739a58914", size = 13348562, upload-time = "2025-09-19T00:10:11.51Z" },
{ url = "https://files.pythonhosted.org/packages/4d/31/aec68ab3b4aebdf8f36d191b0685d99faa899ab990753ca0fee60fb99511/mypy-1.18.2-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:a2afc0fa0b0e91b4599ddfe0f91e2c26c2b5a5ab263737e998d6817874c5f7c8", size = 13533296, upload-time = "2025-09-19T00:10:06.568Z" },
{ url = "https://files.pythonhosted.org/packages/9f/83/abcb3ad9478fca3ebeb6a5358bb0b22c95ea42b43b7789c7fb1297ca44f4/mypy-1.18.2-cp312-cp312-win_amd64.whl", hash = "sha256:d8068d0afe682c7c4897c0f7ce84ea77f6de953262b12d07038f4d296d547074", size = 9828828, upload-time = "2025-09-19T00:10:28.203Z" },
{ url = "https://files.pythonhosted.org/packages/5f/04/7f462e6fbba87a72bc8097b93f6842499c428a6ff0c81dd46948d175afe8/mypy-1.18.2-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:07b8b0f580ca6d289e69209ec9d3911b4a26e5abfde32228a288eb79df129fcc", size = 12898728, upload-time = "2025-09-19T00:10:01.33Z" },
{ url = "https://files.pythonhosted.org/packages/99/5b/61ed4efb64f1871b41fd0b82d29a64640f3516078f6c7905b68ab1ad8b13/mypy-1.18.2-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:ed4482847168439651d3feee5833ccedbf6657e964572706a2adb1f7fa4dfe2e", size = 11910758, upload-time = "2025-09-19T00:10:42.607Z" },
{ url = "https://files.pythonhosted.org/packages/3c/46/d297d4b683cc89a6e4108c4250a6a6b717f5fa96e1a30a7944a6da44da35/mypy-1.18.2-cp313-cp313-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:c3ad2afadd1e9fea5cf99a45a822346971ede8685cc581ed9cd4d42eaf940986", size = 12475342, upload-time = "2025-09-19T00:11:00.371Z" },
{ url = "https://files.pythonhosted.org/packages/83/45/4798f4d00df13eae3bfdf726c9244bcb495ab5bd588c0eed93a2f2dd67f3/mypy-1.18.2-cp313-cp313-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:a431a6f1ef14cf8c144c6b14793a23ec4eae3db28277c358136e79d7d062f62d", size = 13338709, upload-time = "2025-09-19T00:11:03.358Z" },
{ url = "https://files.pythonhosted.org/packages/d7/09/479f7358d9625172521a87a9271ddd2441e1dab16a09708f056e97007207/mypy-1.18.2-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:7ab28cc197f1dd77a67e1c6f35cd1f8e8b73ed2217e4fc005f9e6a504e46e7ba", size = 13529806, upload-time = "2025-09-19T00:10:26.073Z" },
{ url = "https://files.pythonhosted.org/packages/71/cf/ac0f2c7e9d0ea3c75cd99dff7aec1c9df4a1376537cb90e4c882267ee7e9/mypy-1.18.2-cp313-cp313-win_amd64.whl", hash = "sha256:0e2785a84b34a72ba55fb5daf079a1003a34c05b22238da94fcae2bbe46f3544", size = 9833262, upload-time = "2025-09-19T00:10:40.035Z" },
{ url = "https://files.pythonhosted.org/packages/5a/0c/7d5300883da16f0063ae53996358758b2a2df2a09c72a5061fa79a1f5006/mypy-1.18.2-cp314-cp314-macosx_10_13_x86_64.whl", hash = "sha256:62f0e1e988ad41c2a110edde6c398383a889d95b36b3e60bcf155f5164c4fdce", size = 12893775, upload-time = "2025-09-19T00:10:03.814Z" },
{ url = "https://files.pythonhosted.org/packages/50/df/2cffbf25737bdb236f60c973edf62e3e7b4ee1c25b6878629e88e2cde967/mypy-1.18.2-cp314-cp314-macosx_11_0_arm64.whl", hash = "sha256:8795a039bab805ff0c1dfdb8cd3344642c2b99b8e439d057aba30850b8d3423d", size = 11936852, upload-time = "2025-09-19T00:10:51.631Z" },
{ url = "https://files.pythonhosted.org/packages/be/50/34059de13dd269227fb4a03be1faee6e2a4b04a2051c82ac0a0b5a773c9a/mypy-1.18.2-cp314-cp314-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:6ca1e64b24a700ab5ce10133f7ccd956a04715463d30498e64ea8715236f9c9c", size = 12480242, upload-time = "2025-09-19T00:11:07.955Z" },
{ url = "https://files.pythonhosted.org/packages/5b/11/040983fad5132d85914c874a2836252bbc57832065548885b5bb5b0d4359/mypy-1.18.2-cp314-cp314-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:d924eef3795cc89fecf6bedc6ed32b33ac13e8321344f6ddbf8ee89f706c05cb", size = 13326683, upload-time = "2025-09-19T00:09:55.572Z" },
{ url = "https://files.pythonhosted.org/packages/e9/ba/89b2901dd77414dd7a8c8729985832a5735053be15b744c18e4586e506ef/mypy-1.18.2-cp314-cp314-musllinux_1_2_x86_64.whl", hash = "sha256:20c02215a080e3a2be3aa50506c67242df1c151eaba0dcbc1e4e557922a26075", size = 13514749, upload-time = "2025-09-19T00:10:44.827Z" },
{ url = "https://files.pythonhosted.org/packages/25/bc/cc98767cffd6b2928ba680f3e5bc969c4152bf7c2d83f92f5a504b92b0eb/mypy-1.18.2-cp314-cp314-win_amd64.whl", hash = "sha256:749b5f83198f1ca64345603118a6f01a4e99ad4bf9d103ddc5a3200cc4614adf", size = 9982959, upload-time = "2025-09-19T00:10:37.344Z" },
{ url = "https://files.pythonhosted.org/packages/87/e3/be76d87158ebafa0309946c4a73831974d4d6ab4f4ef40c3b53a385a66fd/mypy-1.18.2-py3-none-any.whl", hash = "sha256:22a1748707dd62b58d2ae53562ffc4d7f8bcc727e8ac7cbc69c053ddc874d47e", size = 2352367, upload-time = "2025-09-19T00:10:15.489Z" },
]
[[package]]
name = "mypy-extensions"
version = "1.1.0"
source = { registry = "https://pypi.org/simple" }
sdist = { url = "https://files.pythonhosted.org/packages/a2/6e/371856a3fb9d31ca8dac321cda606860fa4548858c0cc45d9d1d4ca2628b/mypy_extensions-1.1.0.tar.gz", hash = "sha256:52e68efc3284861e772bbcd66823fde5ae21fd2fdb51c62a211403730b916558", size = 6343, upload-time = "2025-04-22T14:54:24.164Z" }
wheels = [
{ url = "https://files.pythonhosted.org/packages/79/7b/2c79738432f5c924bef5071f933bcc9efd0473bac3b4aa584a6f7c1c8df8/mypy_extensions-1.1.0-py3-none-any.whl", hash = "sha256:1be4cccdb0f2482337c4743e60421de3a356cd97508abadd57d47403e94f5505", size = 4963, upload-time = "2025-04-22T14:54:22.983Z" },
]
[[package]]
name = "networkx"
version = "3.5"
@ -1192,7 +1256,7 @@ name = "nvidia-cudnn-cu12"
version = "9.10.2.21"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "nvidia-cublas-cu12" },
{ name = "nvidia-cublas-cu12", marker = "sys_platform == 'linux' or sys_platform == 'win32'" },
]
wheels = [
{ url = "https://files.pythonhosted.org/packages/ba/51/e123d997aa098c61d029f76663dedbfb9bc8dcf8c60cbd6adbe42f76d049/nvidia_cudnn_cu12-9.10.2.21-py3-none-manylinux_2_27_x86_64.whl", hash = "sha256:949452be657fa16687d0930933f032835951ef0892b37d2d53824d1a84dc97a8", size = 706758467, upload-time = "2025-06-06T21:54:08.597Z" },
@ -1203,7 +1267,7 @@ name = "nvidia-cufft-cu12"
version = "11.3.3.83"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "nvidia-nvjitlink-cu12" },
{ name = "nvidia-nvjitlink-cu12", marker = "sys_platform == 'linux' or sys_platform == 'win32'" },
]
wheels = [
{ url = "https://files.pythonhosted.org/packages/1f/13/ee4e00f30e676b66ae65b4f08cb5bcbb8392c03f54f2d5413ea99a5d1c80/nvidia_cufft_cu12-11.3.3.83-py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:4d2dd21ec0b88cf61b62e6b43564355e5222e4a3fb394cac0db101f2dd0d4f74", size = 193118695, upload-time = "2025-03-07T01:45:27.821Z" },
@ -1230,9 +1294,9 @@ name = "nvidia-cusolver-cu12"
version = "11.7.3.90"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "nvidia-cublas-cu12" },
{ name = "nvidia-cusparse-cu12" },
{ name = "nvidia-nvjitlink-cu12" },
{ name = "nvidia-cublas-cu12", marker = "sys_platform == 'linux' or sys_platform == 'win32'" },
{ name = "nvidia-cusparse-cu12", marker = "sys_platform == 'linux' or sys_platform == 'win32'" },
{ name = "nvidia-nvjitlink-cu12", marker = "sys_platform == 'linux' or sys_platform == 'win32'" },
]
wheels = [
{ url = "https://files.pythonhosted.org/packages/85/48/9a13d2975803e8cf2777d5ed57b87a0b6ca2cc795f9a4f59796a910bfb80/nvidia_cusolver_cu12-11.7.3.90-py3-none-manylinux_2_27_x86_64.whl", hash = "sha256:4376c11ad263152bd50ea295c05370360776f8c3427b30991df774f9fb26c450", size = 267506905, upload-time = "2025-03-07T01:47:16.273Z" },
@ -1243,7 +1307,7 @@ name = "nvidia-cusparse-cu12"
version = "12.5.8.93"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "nvidia-nvjitlink-cu12" },
{ name = "nvidia-nvjitlink-cu12", marker = "sys_platform == 'linux' or sys_platform == 'win32'" },
]
wheels = [
{ url = "https://files.pythonhosted.org/packages/c2/f5/e1854cb2f2bcd4280c44736c93550cc300ff4b8c95ebe370d0aa7d2b473d/nvidia_cusparse_cu12-12.5.8.93-py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:1ec05d76bbbd8b61b06a80e1eaf8cf4959c3d4ce8e711b65ebd0443bb0ebb13b", size = 288216466, upload-time = "2025-03-07T01:48:13.779Z" },
@ -1308,6 +1372,15 @@ wheels = [
{ url = "https://files.pythonhosted.org/packages/aa/18/a8444036c6dd65ba3624c63b734d3ba95ba63ace513078e1580590075d21/pastel-0.2.1-py2.py3-none-any.whl", hash = "sha256:4349225fcdf6c2bb34d483e523475de5bb04a5c10ef711263452cb37d7dd4364", size = 5955, upload-time = "2020-09-16T19:21:11.409Z" },
]
[[package]]
name = "pathspec"
version = "0.12.1"
source = { registry = "https://pypi.org/simple" }
sdist = { url = "https://files.pythonhosted.org/packages/ca/bc/f35b8446f4531a7cb215605d100cd88b7ac6f44ab3fc94870c120ab3adbf/pathspec-0.12.1.tar.gz", hash = "sha256:a482d51503a1ab33b1c67a6c3813a26953dbdc71c31dacaef9a838c4e29f5712", size = 51043, upload-time = "2023-12-10T22:30:45Z" }
wheels = [
{ url = "https://files.pythonhosted.org/packages/cc/20/ff623b09d963f88bfde16306a54e12ee5ea43e9b597108672ff3a408aad6/pathspec-0.12.1-py3-none-any.whl", hash = "sha256:a0d503e138a4c123b27490a4f7beda6a01c6f288df0e4a8b79c7eb0dc7b4cc08", size = 31191, upload-time = "2023-12-10T22:30:43.14Z" },
]
[[package]]
name = "pillow"
version = "11.3.0"
@ -1396,6 +1469,32 @@ wheels = [
{ url = "https://files.pythonhosted.org/packages/92/1b/5337af1a6a478d25a3e3c56b9b4b42b0a160314e02f4a0498d5322c8dac4/poethepoet-0.37.0-py3-none-any.whl", hash = "sha256:861790276315abcc8df1b4bd60e28c3d48a06db273edd3092f3c94e1a46e5e22", size = 90062, upload-time = "2025-08-11T18:00:27.595Z" },
]
[[package]]
name = "polars"
version = "1.35.1"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "polars-runtime-32" },
]
sdist = { url = "https://files.pythonhosted.org/packages/9b/5b/3caad788d93304026cbf0ab4c37f8402058b64a2f153b9c62f8b30f5d2ee/polars-1.35.1.tar.gz", hash = "sha256:06548e6d554580151d6ca7452d74bceeec4640b5b9261836889b8e68cfd7a62e", size = 694881, upload-time = "2025-10-30T12:12:52.294Z" }
wheels = [
{ url = "https://files.pythonhosted.org/packages/9f/4c/21a227b722534404241c2a76beceb7463469d50c775a227fc5c209eb8adc/polars-1.35.1-py3-none-any.whl", hash = "sha256:c29a933f28aa330d96a633adbd79aa5e6a6247a802a720eead9933f4613bdbf4", size = 783598, upload-time = "2025-10-30T12:11:54.668Z" },
]
[[package]]
name = "polars-runtime-32"
version = "1.35.1"
source = { registry = "https://pypi.org/simple" }
sdist = { url = "https://files.pythonhosted.org/packages/df/3e/19c252e8eb4096300c1a36ec3e50a27e5fa9a1ccaf32d3927793c16abaee/polars_runtime_32-1.35.1.tar.gz", hash = "sha256:f6b4ec9cd58b31c87af1b8c110c9c986d82345f1d50d7f7595b5d447a19dc365", size = 2696218, upload-time = "2025-10-30T12:12:53.479Z" }
wheels = [
{ url = "https://files.pythonhosted.org/packages/08/2c/da339459805a26105e9d9c2f07e43ca5b8baeee55acd5457e6881487a79a/polars_runtime_32-1.35.1-cp39-abi3-macosx_10_12_x86_64.whl", hash = "sha256:6f051a42f6ae2f26e3bc2cf1f170f2120602976e2a3ffb6cfba742eecc7cc620", size = 40525100, upload-time = "2025-10-30T12:11:58.098Z" },
{ url = "https://files.pythonhosted.org/packages/27/70/a0733568b3533481924d2ce68b279ab3d7334e5fa6ed259f671f650b7c5e/polars_runtime_32-1.35.1-cp39-abi3-macosx_11_0_arm64.whl", hash = "sha256:c2232f9cf05ba59efc72d940b86c033d41fd2d70bf2742e8115ed7112a766aa9", size = 36701908, upload-time = "2025-10-30T12:12:02.166Z" },
{ url = "https://files.pythonhosted.org/packages/46/54/6c09137bef9da72fd891ba58c2962cc7c6c5cad4649c0e668d6b344a9d7b/polars_runtime_32-1.35.1-cp39-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:42f9837348557fd674477ea40a6ac8a7e839674f6dd0a199df24be91b026024c", size = 41317692, upload-time = "2025-10-30T12:12:04.928Z" },
{ url = "https://files.pythonhosted.org/packages/22/55/81c5b266a947c339edd7fbaa9e1d9614012d02418453f48b76cc177d3dd9/polars_runtime_32-1.35.1-cp39-abi3-manylinux_2_24_aarch64.whl", hash = "sha256:c873aeb36fed182d5ebc35ca17c7eb193fe83ae2ea551ee8523ec34776731390", size = 37853058, upload-time = "2025-10-30T12:12:08.342Z" },
{ url = "https://files.pythonhosted.org/packages/6c/58/be8b034d559eac515f52408fd6537be9bea095bc0388946a4e38910d3d50/polars_runtime_32-1.35.1-cp39-abi3-win_amd64.whl", hash = "sha256:35cde9453ca7032933f0e58e9ed4388f5a1e415dd0db2dd1e442c81d815e630c", size = 41289554, upload-time = "2025-10-30T12:12:11.104Z" },
{ url = "https://files.pythonhosted.org/packages/f4/7f/e0111b9e2a1169ea82cde3ded9c92683e93c26dfccd72aee727996a1ac5b/polars_runtime_32-1.35.1-cp39-abi3-win_arm64.whl", hash = "sha256:fd77757a6c9eb9865c4bfb7b07e22225207c6b7da382bd0b9bd47732f637105d", size = 36958878, upload-time = "2025-10-30T12:12:15.206Z" },
]
[[package]]
name = "pre-commit"
version = "4.3.0"
@ -1670,7 +1769,8 @@ dependencies = [
{ name = "lightning-utilities" },
{ name = "packaging" },
{ name = "pyyaml" },
{ name = "torch" },
{ name = "torch", version = "2.8.0", source = { registry = "https://pypi.org/simple" }, marker = "sys_platform != 'linux' and sys_platform != 'win32'" },
{ name = "torch", version = "2.8.0+cu128", source = { registry = "https://download.pytorch.org/whl/cu128" }, marker = "sys_platform == 'linux' or sys_platform == 'win32'" },
{ name = "torchmetrics" },
{ name = "tqdm" },
{ name = "typing-extensions" },
@ -1754,11 +1854,11 @@ wheels = [
[[package]]
name = "redis"
version = "6.4.0"
version = "7.0.1"
source = { registry = "https://pypi.org/simple" }
sdist = { url = "https://files.pythonhosted.org/packages/0d/d6/e8b92798a5bd67d659d51a18170e91c16ac3b59738d91894651ee255ed49/redis-6.4.0.tar.gz", hash = "sha256:b01bc7282b8444e28ec36b261df5375183bb47a07eb9c603f284e89cbc5ef010", size = 4647399, upload-time = "2025-08-07T08:10:11.441Z" }
sdist = { url = "https://files.pythonhosted.org/packages/57/8f/f125feec0b958e8d22c8f0b492b30b1991d9499a4315dfde466cf4289edc/redis-7.0.1.tar.gz", hash = "sha256:c949df947dca995dc68fdf5a7863950bf6df24f8d6022394585acc98e81624f1", size = 4755322, upload-time = "2025-10-27T14:34:00.33Z" }
wheels = [
{ url = "https://files.pythonhosted.org/packages/e8/02/89e2ed7e85db6c93dfa9e8f691c5087df4e3551ab39081a4d7c6d1f90e05/redis-6.4.0-py3-none-any.whl", hash = "sha256:f0544fa9604264e9464cdf4814e7d4830f74b165d52f2a330a760a88dd248b7f", size = 279847, upload-time = "2025-08-07T08:10:09.84Z" },
{ url = "https://files.pythonhosted.org/packages/e9/97/9f22a33c475cda519f20aba6babb340fb2f2254a02fb947816960d1e669a/redis-7.0.1-py3-none-any.whl", hash = "sha256:4977af3c7d67f8f0eb8b6fec0dafc9605db9343142f634041fb0235f67c0588a", size = 339938, upload-time = "2025-10-27T14:33:58.553Z" },
]
[[package]]
@ -1963,15 +2063,40 @@ wheels = [
{ url = "https://files.pythonhosted.org/packages/32/d5/f9a850d79b0851d1d4ef6456097579a9005b31fea68726a4ae5f2d82ddd9/threadpoolctl-3.6.0-py3-none-any.whl", hash = "sha256:43a0b8fd5a2928500110039e43a5eed8480b918967083ea48dc3ab9f13c4a7fb", size = 18638, upload-time = "2025-03-13T13:49:21.846Z" },
]
[[package]]
name = "torch"
version = "2.8.0"
source = { registry = "https://pypi.org/simple" }
resolution-markers = [
"sys_platform != 'linux' and sys_platform != 'win32'",
]
dependencies = [
{ name = "filelock", marker = "sys_platform != 'linux' and sys_platform != 'win32'" },
{ name = "fsspec", marker = "sys_platform != 'linux' and sys_platform != 'win32'" },
{ name = "jinja2", marker = "sys_platform != 'linux' and sys_platform != 'win32'" },
{ name = "networkx", marker = "sys_platform != 'linux' and sys_platform != 'win32'" },
{ name = "setuptools", marker = "sys_platform != 'linux' and sys_platform != 'win32'" },
{ name = "sympy", marker = "sys_platform != 'linux' and sys_platform != 'win32'" },
{ name = "typing-extensions", marker = "sys_platform != 'linux' and sys_platform != 'win32'" },
]
wheels = [
{ url = "https://files.pythonhosted.org/packages/be/66/5c9a321b325aaecb92d4d1855421e3a055abd77903b7dab6575ca07796db/torch-2.8.0-cp312-none-macosx_11_0_arm64.whl", hash = "sha256:619c2869db3ada2c0105487ba21b5008defcc472d23f8b80ed91ac4a380283b0", size = 73630478, upload-time = "2025-08-06T14:53:57.144Z" },
{ url = "https://files.pythonhosted.org/packages/de/69/8b7b13bba430f5e21d77708b616f767683629fc4f8037564a177d20f90ed/torch-2.8.0-cp313-cp313t-macosx_14_0_arm64.whl", hash = "sha256:1a62a1ec4b0498930e2543535cf70b1bef8c777713de7ceb84cd79115f553767", size = 73915128, upload-time = "2025-08-06T14:54:34.769Z" },
{ url = "https://files.pythonhosted.org/packages/04/6e/650bb7f28f771af0cb791b02348db8b7f5f64f40f6829ee82aa6ce99aabe/torch-2.8.0-cp313-none-macosx_11_0_arm64.whl", hash = "sha256:7b677e17f5a3e69fdef7eb3b9da72622f8d322692930297e4ccb52fefc6c8211", size = 73632395, upload-time = "2025-08-06T14:55:28.645Z" },
]
[[package]]
name = "torch"
version = "2.8.0+cu128"
source = { registry = "https://download.pytorch.org/whl/cu128" }
resolution-markers = [
"sys_platform == 'linux' or sys_platform == 'win32'",
]
dependencies = [
{ name = "filelock" },
{ name = "fsspec" },
{ name = "jinja2" },
{ name = "networkx" },
{ name = "filelock", marker = "sys_platform == 'linux' or sys_platform == 'win32'" },
{ name = "fsspec", marker = "sys_platform == 'linux' or sys_platform == 'win32'" },
{ name = "jinja2", marker = "sys_platform == 'linux' or sys_platform == 'win32'" },
{ name = "networkx", marker = "sys_platform == 'linux' or sys_platform == 'win32'" },
{ name = "nvidia-cublas-cu12", marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" },
{ name = "nvidia-cuda-cupti-cu12", marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" },
{ name = "nvidia-cuda-nvrtc-cu12", marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" },
@ -1986,10 +2111,10 @@ dependencies = [
{ name = "nvidia-nccl-cu12", marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" },
{ name = "nvidia-nvjitlink-cu12", marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" },
{ name = "nvidia-nvtx-cu12", marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" },
{ name = "setuptools" },
{ name = "sympy" },
{ name = "setuptools", marker = "sys_platform == 'linux' or sys_platform == 'win32'" },
{ name = "sympy", marker = "sys_platform == 'linux' or sys_platform == 'win32'" },
{ name = "triton", marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" },
{ name = "typing-extensions" },
{ name = "typing-extensions", marker = "sys_platform == 'linux' or sys_platform == 'win32'" },
]
wheels = [
{ url = "https://download.pytorch.org/whl/cu128/torch-2.8.0%2Bcu128-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:4354fc05bb79b208d6995a04ca1ceef6a9547b1c4334435574353d381c55087c" },
@ -2008,7 +2133,8 @@ dependencies = [
{ name = "lightning-utilities" },
{ name = "numpy" },
{ name = "packaging" },
{ name = "torch" },
{ name = "torch", version = "2.8.0", source = { registry = "https://pypi.org/simple" }, marker = "sys_platform != 'linux' and sys_platform != 'win32'" },
{ name = "torch", version = "2.8.0+cu128", source = { registry = "https://download.pytorch.org/whl/cu128" }, marker = "sys_platform == 'linux' or sys_platform == 'win32'" },
]
sdist = { url = "https://files.pythonhosted.org/packages/85/2e/48a887a59ecc4a10ce9e8b35b3e3c5cef29d902c4eac143378526e7485cb/torchmetrics-1.8.2.tar.gz", hash = "sha256:cf64a901036bf107f17a524009eea7781c9c5315d130713aeca5747a686fe7a5", size = 580679, upload-time = "2025-09-03T14:00:54.077Z" }
wheels = [
@ -2032,7 +2158,7 @@ name = "triton"
version = "3.4.0"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "setuptools" },
{ name = "setuptools", marker = "sys_platform == 'linux' or sys_platform == 'win32'" },
]
wheels = [
{ url = "https://files.pythonhosted.org/packages/d0/66/b1eb52839f563623d185f0927eb3530ee4d5ffe9d377cdaf5346b306689e/triton-3.4.0-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:31c1d84a5c0ec2c0f8e8a072d7fd150cab84a9c239eaddc6706c081bfae4eb04", size = 155560068, upload-time = "2025-07-30T19:58:37.081Z" },