forked from enviPath/enviPy
124 lines
4.4 KiB
Python
124 lines
4.4 KiB
Python
from tempfile import TemporaryDirectory
|
|
|
|
import numpy as np
|
|
from django.test import TestCase
|
|
|
|
from epdb.logic import PackageManager
|
|
from epdb.models import User, MLRelativeReasoning, Package, RuleBasedRelativeReasoning
|
|
|
|
|
|
class ModelTest(TestCase):
|
|
fixtures = ["test_fixtures.jsonl.gz"]
|
|
|
|
@classmethod
|
|
def setUpClass(cls):
|
|
super(ModelTest, cls).setUpClass()
|
|
cls.user = User.objects.get(username="anonymous")
|
|
cls.package = PackageManager.create_package(cls.user, "Anon Test Package", "No Desc")
|
|
cls.BBD_SUBSET = Package.objects.get(name="Fixtures")
|
|
|
|
def test_mlrr(self):
|
|
with TemporaryDirectory() as tmpdir:
|
|
with self.settings(MODEL_DIR=tmpdir):
|
|
threshold = float(0.5)
|
|
|
|
rule_package_objs = [self.BBD_SUBSET]
|
|
data_package_objs = [self.BBD_SUBSET]
|
|
eval_packages_objs = [self.BBD_SUBSET]
|
|
|
|
mod = MLRelativeReasoning.create(
|
|
self.package,
|
|
rule_package_objs,
|
|
data_package_objs,
|
|
eval_packages_objs,
|
|
threshold=threshold,
|
|
name="ECC - BBD - 0.5",
|
|
description="Created MLRelativeReasoning in Testcase",
|
|
)
|
|
|
|
mod.build_dataset()
|
|
mod.build_model()
|
|
mod.multigen_eval = True
|
|
mod.save()
|
|
mod.evaluate_model(n_splits=2)
|
|
|
|
results = mod.predict("CCN(CC)C(=O)C1=CC(=CC=C1)C")
|
|
|
|
products = dict()
|
|
for r in results:
|
|
for ps in r.product_sets:
|
|
products[tuple(sorted(ps.product_set))] = (r.rule.name, r.probability)
|
|
|
|
expected = {
|
|
("CC=O", "CCNC(=O)C1=CC(C)=CC=C1"): (
|
|
"bt0243-4301",
|
|
np.float64(0.33333333333333337),
|
|
),
|
|
("CC1=CC=CC(C(=O)O)=C1", "CCNCC"): ("bt0430-4011", np.float64(0.25)),
|
|
}
|
|
|
|
self.assertEqual(products, expected)
|
|
|
|
# from pprint import pprint
|
|
# pprint(mod.eval_results)
|
|
|
|
def test_applicability(self):
|
|
with TemporaryDirectory() as tmpdir:
|
|
with self.settings(MODEL_DIR=tmpdir):
|
|
threshold = float(0.5)
|
|
|
|
rule_package_objs = [self.BBD_SUBSET]
|
|
data_package_objs = [self.BBD_SUBSET]
|
|
eval_packages_objs = [self.BBD_SUBSET]
|
|
|
|
mod = MLRelativeReasoning.create(
|
|
self.package,
|
|
rule_package_objs,
|
|
data_package_objs,
|
|
eval_packages_objs,
|
|
threshold=threshold,
|
|
name="ECC - BBD - 0.5",
|
|
description="Created MLRelativeReasoning in Testcase",
|
|
build_app_domain=True, # To test the applicability domain this must be True
|
|
app_domain_num_neighbours=5,
|
|
app_domain_local_compatibility_threshold=0.5,
|
|
app_domain_reliability_threshold=0.5,
|
|
)
|
|
|
|
mod.build_dataset()
|
|
mod.build_model()
|
|
mod.multigen_eval = True
|
|
mod.save()
|
|
mod.evaluate_model(n_splits=2)
|
|
|
|
results = mod.predict("CCN(CC)C(=O)C1=CC(=CC=C1)C")
|
|
|
|
def test_rbrr(self):
|
|
with TemporaryDirectory() as tmpdir:
|
|
with self.settings(MODEL_DIR=tmpdir):
|
|
threshold = float(0.5)
|
|
|
|
rule_package_objs = [self.BBD_SUBSET]
|
|
data_package_objs = [self.BBD_SUBSET]
|
|
eval_packages_objs = [self.BBD_SUBSET]
|
|
|
|
mod = RuleBasedRelativeReasoning.create(
|
|
self.package,
|
|
rule_package_objs,
|
|
data_package_objs,
|
|
eval_packages_objs,
|
|
threshold=threshold,
|
|
min_count=5,
|
|
max_count=0,
|
|
name='ECC - BBD - 0.5',
|
|
description='Created MLRelativeReasoning in Testcase',
|
|
)
|
|
|
|
mod.build_dataset()
|
|
mod.build_model()
|
|
mod.multigen_eval = True
|
|
mod.save()
|
|
mod.evaluate_model(n_splits=2)
|
|
|
|
results = mod.predict("CCN(CC)C(=O)C1=CC(=CC=C1)C")
|