forked from enviPath/enviPy
`evaluate_model` in `PackageBasedModel` and `EnviFormer` now use evaluation packages if any are present instead of the random splits. Co-authored-by: Liam Brydon <62733830+MyCreativityOutlet@users.noreply.github.com> Reviewed-on: enviPath/enviPy#148 Co-authored-by: liambrydon <lbry121@aucklanduni.ac.nz> Co-committed-by: liambrydon <lbry121@aucklanduni.ac.nz>
32 lines
1.3 KiB
Python
32 lines
1.3 KiB
Python
from tempfile import TemporaryDirectory
|
|
from django.test import TestCase
|
|
from epdb.logic import PackageManager
|
|
from epdb.models import User, EnviFormer, Package
|
|
|
|
|
|
class EnviFormerTest(TestCase):
|
|
fixtures = ["test_fixtures.jsonl.gz"]
|
|
|
|
@classmethod
|
|
def setUpClass(cls):
|
|
super(EnviFormerTest, cls).setUpClass()
|
|
cls.user = User.objects.get(username='anonymous')
|
|
cls.package = PackageManager.create_package(cls.user, 'Anon Test Package', 'No Desc')
|
|
cls.BBD_SUBSET = Package.objects.get(name='Fixtures')
|
|
|
|
def test_model_flow(self):
|
|
"""Test the full flow of EnviFormer, dataset build -> model finetune -> model evaluate -> model inference"""
|
|
with TemporaryDirectory() as tmpdir:
|
|
with self.settings(MODEL_DIR=tmpdir):
|
|
threshold = float(0.5)
|
|
data_package_objs = [self.BBD_SUBSET]
|
|
eval_packages_objs = [self.BBD_SUBSET]
|
|
mod = EnviFormer.create(self.package, data_package_objs, eval_packages_objs, threshold=threshold)
|
|
|
|
mod.build_dataset()
|
|
mod.build_model()
|
|
mod.multigen_eval = True
|
|
mod.save()
|
|
mod.evaluate_model()
|
|
results = mod.predict('CCN(CC)C(=O)C1=CC(=CC=C1)C')
|