Files
enviPy-bayer/tests/test_enviformer.py
liambrydon 22f0bbe10b [Feature] Eval package evaluation
`evaluate_model` in `PackageBasedModel` and `EnviFormer` now use evaluation packages if any are present instead of the random splits.

Co-authored-by: Liam Brydon <62733830+MyCreativityOutlet@users.noreply.github.com>
Reviewed-on: enviPath/enviPy#148
Co-authored-by: liambrydon <lbry121@aucklanduni.ac.nz>
Co-committed-by: liambrydon <lbry121@aucklanduni.ac.nz>
2025-10-08 19:03:21 +13:00

32 lines
1.3 KiB
Python

from tempfile import TemporaryDirectory
from django.test import TestCase
from epdb.logic import PackageManager
from epdb.models import User, EnviFormer, Package
class EnviFormerTest(TestCase):
fixtures = ["test_fixtures.jsonl.gz"]
@classmethod
def setUpClass(cls):
super(EnviFormerTest, cls).setUpClass()
cls.user = User.objects.get(username='anonymous')
cls.package = PackageManager.create_package(cls.user, 'Anon Test Package', 'No Desc')
cls.BBD_SUBSET = Package.objects.get(name='Fixtures')
def test_model_flow(self):
"""Test the full flow of EnviFormer, dataset build -> model finetune -> model evaluate -> model inference"""
with TemporaryDirectory() as tmpdir:
with self.settings(MODEL_DIR=tmpdir):
threshold = float(0.5)
data_package_objs = [self.BBD_SUBSET]
eval_packages_objs = [self.BBD_SUBSET]
mod = EnviFormer.create(self.package, data_package_objs, eval_packages_objs, threshold=threshold)
mod.build_dataset()
mod.build_model()
mod.multigen_eval = True
mod.save()
mod.evaluate_model()
results = mod.predict('CCN(CC)C(=O)C1=CC(=CC=C1)C')