Files
enviPy-bayer/tests/test_model.py
liambrydon 22f0bbe10b [Feature] Eval package evaluation
`evaluate_model` in `PackageBasedModel` and `EnviFormer` now use evaluation packages if any are present instead of the random splits.

Co-authored-by: Liam Brydon <62733830+MyCreativityOutlet@users.noreply.github.com>
Reviewed-on: enviPath/enviPy#148
Co-authored-by: liambrydon <lbry121@aucklanduni.ac.nz>
Co-committed-by: liambrydon <lbry121@aucklanduni.ac.nz>
2025-10-08 19:03:21 +13:00

73 lines
2.6 KiB
Python

from tempfile import TemporaryDirectory
import numpy as np
from django.test import TestCase
from epdb.logic import PackageManager
from epdb.models import User, MLRelativeReasoning, RuleBasedRelativeReasoning, Package
class ModelTest(TestCase):
fixtures = ["test_fixtures.jsonl.gz"]
@classmethod
def setUpClass(cls):
super(ModelTest, cls).setUpClass()
cls.user = User.objects.get(username='anonymous')
cls.package = PackageManager.create_package(cls.user, 'Anon Test Package', 'No Desc')
cls.BBD_SUBSET = Package.objects.get(name='Fixtures')
def test_smoke(self):
with TemporaryDirectory() as tmpdir:
with self.settings(MODEL_DIR=tmpdir):
threshold = float(0.5)
rule_package_objs = [self.BBD_SUBSET]
data_package_objs = [self.BBD_SUBSET]
eval_packages_objs = [self.BBD_SUBSET]
mod = MLRelativeReasoning.create(
self.package,
rule_package_objs,
data_package_objs,
eval_packages_objs,
threshold=threshold,
name='ECC - BBD - 0.5',
description='Created MLRelativeReasoning in Testcase',
)
# mod = RuleBasedRelativeReasoning.create(
# self.package,
# rule_package_objs,
# data_package_objs,
# eval_packages_objs,
# threshold=threshold,
# min_count=5,
# max_count=0,
# name='ECC - BBD - 0.5',
# description='Created MLRelativeReasoning in Testcase',
# )
mod.build_dataset()
mod.build_model()
mod.multigen_eval = True
mod.save()
mod.evaluate_model()
results = mod.predict('CCN(CC)C(=O)C1=CC(=CC=C1)C')
products = dict()
for r in results:
for ps in r.product_sets:
products[tuple(sorted(ps.product_set))] = (r.rule.name, r.probability)
expected = {
('CC=O', 'CCNC(=O)C1=CC(C)=CC=C1'): ('bt0243-4301', np.float64(0.33333333333333337)),
('CC1=CC=CC(C(=O)O)=C1', 'CCNCC'): ('bt0430-4011', np.float64(0.25)),
}
self.assertEqual(products, expected)
# from pprint import pprint
# pprint(mod.eval_results)