Files
enviPy-bayer/epdb/tasks.py
liambrydon 376fd65785 [Feature] ML model caching for reducing prediction overhead (#156)
The caching is now finished. The cache is created in `settings.py` giving us the most flexibility for using it in the future.

The cache is currently updated/accessed by `tasks.py/get_ml_model` which can be called from whatever task needs to access ml models in this way (currently, `predict` and `predict_simple`).

This implementation currently caches all ml models including the relative reasoning. If we don't want this and only want to cache enviFormer, i can change it to that. However, I don't think there is a harm in having the other models be cached as well.

Co-authored-by: Liam Brydon <62733830+MyCreativityOutlet@users.noreply.github.com>
Reviewed-on: enviPath/enviPy#156
Co-authored-by: liambrydon <lbry121@aucklanduni.ac.nz>
Co-committed-by: liambrydon <lbry121@aucklanduni.ac.nz>
2025-10-16 08:58:36 +13:00

96 lines
2.5 KiB
Python

import logging
from typing import Optional
from celery.utils.functional import LRUCache
from celery import shared_task
from epdb.models import Pathway, Node, EPModel, Setting
from epdb.logic import SPathway
logger = logging.getLogger(__name__)
ML_CACHE = LRUCache(3) # Cache the three most recent ML models to reduce load times.
def get_ml_model(model_pk: int):
if model_pk not in ML_CACHE:
ML_CACHE[model_pk] = EPModel.objects.get(id=model_pk)
return ML_CACHE[model_pk]
@shared_task(queue="background")
def mul(a, b):
return a * b
@shared_task(queue="predict")
def predict_simple(model_pk: int, smiles: str):
mod = get_ml_model(model_pk)
res = mod.predict(smiles)
return res
@shared_task(queue="background")
def send_registration_mail(user_pk: int):
pass
@shared_task(queue="model")
def build_model(model_pk: int):
mod = EPModel.objects.get(id=model_pk)
mod.build_dataset()
mod.build_model()
@shared_task(queue="model")
def evaluate_model(model_pk: int):
mod = EPModel.objects.get(id=model_pk)
mod.evaluate_model()
@shared_task(queue="model")
def retrain(model_pk: int):
mod = EPModel.objects.get(id=model_pk)
mod.retrain()
@shared_task(queue="predict")
def predict(
pw_pk: int, pred_setting_pk: int, limit: Optional[int] = None, node_pk: Optional[int] = None
) -> Pathway:
pw = Pathway.objects.get(id=pw_pk)
setting = Setting.objects.get(id=pred_setting_pk)
# If the setting has a model add/restore it from the cache
if setting.model is not None:
setting.model = get_ml_model(setting.model.pk)
pw.kv.update(**{"status": "running"})
pw.save()
try:
# regular prediction
if limit is not None:
spw = SPathway(prediction_setting=setting, persist=pw)
level = 0
while not spw.done:
spw.predict_step(from_depth=level)
level += 1
# break in case we are in incremental mode
if limit != -1:
if level >= limit:
break
elif node_pk is not None:
n = Node.objects.get(id=node_pk, pathway=pw)
spw = SPathway.from_pathway(pw)
spw.predict_step(from_node=n)
else:
raise ValueError("Neither limit nor node_pk given!")
except Exception as e:
pw.kv.update({"status": "failed"})
pw.save()
raise e
pw.kv.update(**{"status": "completed"})
pw.save()