Files
enviPy-bayer/templates/objects/model.html
Liam Brydon 901de4640c [Fix] Stereochemistry prediction handling (#228 and #238) (#250)
**This pull request will need a separate migration pull-request**

I have added an alert box in two places when the user tries to predict with stereo chemistry.

When a user predicts a pathway with stereo chemistry an alert box is shown in that node's hover.
To do this I added two new fields. Pathway now has a "predicted" BooleanField indicating whether it was predicted or not. It is set to True if the pathway mode for prediction is "predict" or "incremental" and False if it is "build". I think it is a flag that could be useful in the future, perhaps for analysing how many predicted pathways are in enviPath?
Node now has a `stereo_removed` BooleanField which is set to True if the Node's parent Pathways has "predicted" as true and the node SMILES has stereochemistry.
<img width="500" alt="{927AC9FF-DBC9-4A19-9E6E-0EDD3B08C7AC}.png" src="attachments/69ea29bc-c2d2-4cd2-8e98-aae5c5737f69">

When a user does a prediction on a model's page it shows at the top of the list. This did not require any new fields as the entered SMILES does not get saved anywhere.
<img width="500" alt="{BED66F12-5F07-419E-AAA6-FE1FE5B4F266}.png" src="attachments/5fcc3a9b-4d1a-4e48-acac-76b7571f6507">

I think the alert box is an alright solution but if you have a great idea for something that looks/fits better please change it or let me know.

Co-authored-by: Tim Lorsbach <tim@lorsba.ch>
Reviewed-on: enviPath/enviPy#250
Co-authored-by: Liam Brydon <lbry121@aucklanduni.ac.nz>
Co-committed-by: Liam Brydon <lbry121@aucklanduni.ac.nz>
2025-12-03 10:19:34 +13:00

484 lines
19 KiB
HTML

{% extends "framework_modern.html" %}
{% load static %}
{% load envipytags %}
{% block content %}
{% block action_modals %}
{% include "modals/objects/edit_model_modal.html" %}
{% include "modals/objects/evaluate_model_modal.html" %}
{% include "modals/objects/retrain_model_modal.html" %}
{% include "modals/objects/generic_delete_modal.html" %}
{% endblock action_modals %}
<!-- Include required libs -->
<script src="https://d3js.org/d3.v5.min.js"></script>
<script src="https://cdn.jsdelivr.net/npm/c3@0.7.20/c3.min.js"></script>
<link
href="https://cdn.jsdelivr.net/npm/c3@0.7.20/c3.min.css"
rel="stylesheet"
/>
<div class="space-y-2 p-4">
<!-- Header Section -->
<div class="card bg-base-100">
<div class="card-body">
<div class="flex items-center justify-between">
<h2 class="card-title text-2xl">{{ model.name }}</h2>
<div id="actionsButton" class="dropdown dropdown-end hidden">
<div tabindex="0" role="button" class="btn btn-ghost btn-sm">
<svg
xmlns="http://www.w3.org/2000/svg"
width="16"
height="16"
viewBox="0 0 24 24"
fill="none"
stroke="currentColor"
stroke-width="2"
stroke-linecap="round"
stroke-linejoin="round"
class="lucide lucide-wrench"
>
<path
d="M14.7 6.3a1 1 0 0 0 0 1.4l1.6 1.6a1 1 0 0 0 1.4 0l3.77-3.77a6 6 0 0 1-7.94 7.94l-6.91 6.91a2.12 2.12 0 0 1-3-3l6.91-6.91a6 6 0 0 1 7.94-7.94l-3.76 3.76z"
/>
</svg>
Actions
</div>
<ul
tabindex="-1"
class="dropdown-content menu bg-base-100 rounded-box z-50 w-52 p-2"
>
{% block actions %}
{% include "actions/objects/model.html" %}
{% endblock %}
</ul>
</div>
</div>
<p class="mt-2">{{ model.description }}</p>
</div>
</div>
{% if model|classname == 'MLRelativeReasoning' or model|classname == 'RuleBasedRelativeReasoning' %}
<!-- Rule Packages -->
<div class="collapse-arrow bg-base-200 collapse">
<input type="checkbox" checked />
<div class="collapse-title text-xl font-medium">Rule Packages</div>
<div class="collapse-content">
<ul class="menu bg-base-100 rounded-box w-full">
{% for p in model.rule_packages.all %}
<li>
<a href="{{ p.url }}" class="hover:bg-base-200">{{ p.name }}</a>
</li>
{% endfor %}
</ul>
</div>
</div>
<!-- Reaction Packages -->
<div class="collapse-arrow bg-base-200 collapse">
<input type="checkbox" checked />
<div class="collapse-title text-xl font-medium">Reaction Packages</div>
<div class="collapse-content">
<ul class="menu bg-base-100 rounded-box w-full">
{% for p in model.data_packages.all %}
<li>
<a href="{{ p.url }}" class="hover:bg-base-200">{{ p.name }}</a>
</li>
{% endfor %}
</ul>
</div>
</div>
{% if model.eval_packages.all|length > 0 %}
<!-- Eval Packages -->
<div class="collapse-arrow bg-base-200 collapse">
<input type="checkbox" checked />
<div class="collapse-title text-xl font-medium">Eval Packages</div>
<div class="collapse-content">
<ul class="menu bg-base-100 rounded-box w-full">
{% for p in model.eval_packages.all %}
<li>
<a href="{{ p.url }}" class="hover:bg-base-200"
>{{ p.name }}</a
>
</li>
{% endfor %}
</ul>
</div>
</div>
{% endif %}
<!-- Model Status -->
<div class="collapse-arrow bg-base-200 collapse">
<input type="checkbox" checked />
<div class="collapse-title text-xl font-medium">Model Status</div>
<div class="collapse-content">{{ model.status }}</div>
</div>
{% endif %}
{% if model.ready_for_prediction %}
<!-- Predict Panel -->
<div class="collapse-arrow bg-base-200 collapse">
<input type="checkbox" checked />
<div class="collapse-title text-xl font-medium" id="predictTitle">
Predict
</div>
<div class="collapse-content">
<div class="form-control">
<div class="join w-full">
<input
id="smiles-to-predict"
type="text"
class="input input-bordered join-item grow"
placeholder="CCN(CC)C(=O)C1=CC(=CC=C1)C"
/>
<button
class="btn btn-primary join-item"
type="button"
id="predict-button"
>
Predict!
</button>
</div>
</div>
<div id="predictLoading" class="mt-2"></div>
<div id="predictResultTable" class="mt-4"></div>
</div>
</div>
{% endif %}
{% if model.ready_for_prediction and model.app_domain %}
<!-- App Domain -->
<div class="collapse-arrow bg-base-200 collapse">
<input type="checkbox" checked />
<div class="collapse-title text-xl font-medium">
Applicability Domain Assessment
</div>
<div class="collapse-content">
<div class="form-control">
<div class="join w-full">
<input
id="smiles-to-assess"
type="text"
class="input input-bordered join-item grow"
placeholder="CCN(CC)C(=O)C1=CC(=CC=C1)C"
/>
<button
class="btn btn-primary join-item"
type="button"
id="assess-button"
>
Assess!
</button>
</div>
</div>
<div id="appDomainLoading" class="mt-2"></div>
<div id="appDomainAssessmentResultTable" class="mt-4"></div>
</div>
</div>
{% endif %}
{% if model.model_status == 'FINISHED' %}
<!-- Single Gen Curve Panel -->
<div class="collapse-arrow bg-base-200 collapse">
<input type="checkbox" checked />
<div class="collapse-title text-xl font-medium">
Precision Recall Curve
</div>
<div class="collapse-content">
<div class="flex justify-center">
<div id="sg-chart"></div>
</div>
</div>
</div>
{% endif %}
</div>
{# prettier-ignore-start #}
{# FIXME: This is a hack to get the precision recall curve data into the JavaScript code. #}
<script>
function handlePredictionResponse(data) {
let stereo = data["stereo"]
data = data["pred"]
let res = ""
if (stereo) {
res += "<span class='alert alert-warning alert-soft'>Removed stereochemistry for prediction</span><br>"
}
res += "<table class='table table-zebra'>"
res += "<thead>"
res += "<th scope='col'>#</th>"
const columns = ['products', 'image', 'probability', 'btrule']
for (const col of columns) {
res += "<th scope='col'>" + col + "</th>"
}
res += "</thead>"
res += "<tbody>"
let cnt = 1;
for (const transformation in data) {
res += "<tr>"
res += "<th scope='row'>" + cnt + "</th>"
res += "<th scope='row'>" + data[transformation]['products'][0].join(', ') + "</th>"
res += "<th scope='row'>" + "<img width='400' src='{% url 'depict' %}?smiles=" + encodeURIComponent(data[transformation]['products'][0].join('.')) + "'></th>"
res += "<th scope='row'>" + data[transformation]['probability'].toFixed(3) + "</th>"
if (data[transformation]['btrule'] != null) {
res += "<th scope='row'>" + "<a href='" + data[transformation]['btrule']['url'] + "' class='link link-primary'>" + data[transformation]['btrule']['name'] + "</a>" + "</th>"
} else {
res += "<th scope='row'>N/A</th>"
}
res += "</tr>"
cnt += 1;
}
res += "</tbody>"
res += "</table>"
const resultTable = document.getElementById("predictResultTable");
if (resultTable) {
resultTable.innerHTML = res;
}
}
function clear(divid) {
const element = document.getElementById(divid);
if (element) {
element.classList.remove("alert", "alert-error");
element.innerHTML = "";
}
}
function makeLoadingGif(selector, gifPath) {
const element = document.querySelector(selector);
if (element) {
element.innerHTML = '<img src="' + gifPath + '" alt="Loading...">';
}
}
document.addEventListener('DOMContentLoaded', function() {
// Show actions button if there are actions
const actionsButton = document.getElementById('actionsButton');
const actionsList = actionsButton?.querySelector('ul');
if (actionsList && actionsList.children.length > 0) {
actionsButton?.classList.remove('hidden');
}
{% if model.model_status == 'FINISHED' %}
// Precision Recall Curve
const sgChart = document.getElementById('sg-chart');
if (sgChart) {
const x = ['Recall'];
const y = ['Precision'];
const thres = ['threshold'];
function compare(a, b) {
if (a.threshold < b.threshold)
return -1;
else if (a.threshold > b.threshold)
return 1;
else
return 0;
}
function getIndexForValue(data, val, val_name) {
for (const idx in data) {
if (data[idx][val_name] == val) {
return idx;
}
}
return -1;
}
var data = {{ model.pr_curve|safe }};
if (!data || data.length === 0) {
console.warn('PR curve data is empty');
return;
}
const dataLength = data.length;
data.sort(compare);
for (const idx in data) {
const d = data[idx];
x.push(d.recall);
y.push(d.precision);
thres.push(d.threshold);
}
const chart = c3.generate({
bindto: '#sg-chart',
data: {
onclick: function (d, e) {
const idx = d.index;
const thresh = data[dataLength - idx - 1].threshold;
},
x: 'Recall',
y: 'Precision',
columns: [
x,
y,
]
},
size: {
height: 400,
width: 480
},
axis: {
x: {
max: 1,
min: 0,
label: 'Recall',
padding: 0,
tick: {
fit: true,
values: [0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]
}
},
y: {
max: 1,
min: 0,
label: 'Precision',
padding: 0,
tick: {
fit: true,
values: [0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]
}
}
},
point: {
r: 4
},
tooltip: {
format: {
title: function (recall) {
const idx = getIndexForValue(data, recall, "recall");
if (idx != -1) {
return "Threshold: " + data[idx].threshold;
}
return "";
},
value: function (precision, ratio, id) {
return undefined;
}
}
},
zoom: {
enabled: true
}
});
}
{% endif %}
// Predict button handler
const predictButton = document.getElementById('predict-button');
if (predictButton) {
predictButton.addEventListener('click', function(e) {
e.preventDefault();
clear("predictResultTable");
const smilesInput = document.getElementById('smiles-to-predict');
const smiles = smilesInput ? smilesInput.value.trim() : '';
if (smiles === "") {
const resultTable = document.getElementById("predictResultTable");
if (resultTable) {
resultTable.classList.add("alert", "alert-error");
resultTable.innerHTML = "Please enter a SMILES string to predict!";
}
return;
}
makeLoadingGif("#predictLoading", "{% static '/images/wait.gif' %}");
const params = new URLSearchParams({
smiles: smiles,
classify: "ILikeCats!"
});
fetch('?' + params.toString(), {
method: 'GET',
headers: {
'X-CSRFToken': document.querySelector('[name=csrf-token]').content
}
})
.then(response => {
if (!response.ok) {
return response.json().then(err => { throw err; });
}
return response.json();
})
.then(data => {
const loadingEl = document.getElementById("predictLoading");
if (loadingEl) loadingEl.innerHTML = "";
handlePredictionResponse(data);
})
.catch(error => {
const loadingEl = document.getElementById("predictLoading");
if (loadingEl) loadingEl.innerHTML = "";
const resultTable = document.getElementById("predictResultTable");
if (resultTable) {
resultTable.classList.add("alert", "alert-error");
resultTable.innerHTML = error.error || "Error while processing response :/";
}
});
});
}
// Assess button handler
const assessButton = document.getElementById('assess-button');
if (assessButton) {
assessButton.addEventListener('click', function(e) {
e.preventDefault();
clear("appDomainAssessmentResultTable");
const smilesInput = document.getElementById('smiles-to-assess');
const smiles = smilesInput ? smilesInput.value.trim() : '';
if (smiles === "") {
const resultTable = document.getElementById("appDomainAssessmentResultTable");
if (resultTable) {
resultTable.classList.add("alert", "alert-error");
resultTable.innerHTML = "Please enter a SMILES string to predict!";
}
return;
}
makeLoadingGif("#appDomainLoading", "{% static '/images/wait.gif' %}");
const params = new URLSearchParams({
smiles: smiles,
"app-domain-assessment": "ILikeCats!"
});
fetch('?' + params.toString(), {
method: 'GET',
headers: {
'X-CSRFToken': document.querySelector('[name=csrf-token]').content
}
})
.then(response => {
if (!response.ok) {
return response.json().then(err => { throw err; });
}
return response.json();
})
.then(data => {
const loadingEl = document.getElementById("appDomainLoading");
if (loadingEl) loadingEl.innerHTML = "";
if (typeof handleAssessmentResponse === 'function') {
handleAssessmentResponse("{% url 'depict' %}", data);
}
console.log(data);
})
.catch(error => {
const loadingEl = document.getElementById("appDomainLoading");
if (loadingEl) loadingEl.innerHTML = "";
const resultTable = document.getElementById("appDomainAssessmentResultTable");
if (resultTable) {
resultTable.classList.add("alert", "alert-error");
resultTable.innerHTML = error.error || "Error while processing response :/";
}
});
});
}
});
</script>
{# prettier-ignore-end #}
{% endblock content %}