Files
enviPy-bayer/tests/views/test_model_views.py
Liam Brydon 901de4640c [Fix] Stereochemistry prediction handling (#228 and #238) (#250)
**This pull request will need a separate migration pull-request**

I have added an alert box in two places when the user tries to predict with stereo chemistry.

When a user predicts a pathway with stereo chemistry an alert box is shown in that node's hover.
To do this I added two new fields. Pathway now has a "predicted" BooleanField indicating whether it was predicted or not. It is set to True if the pathway mode for prediction is "predict" or "incremental" and False if it is "build". I think it is a flag that could be useful in the future, perhaps for analysing how many predicted pathways are in enviPath?
Node now has a `stereo_removed` BooleanField which is set to True if the Node's parent Pathways has "predicted" as true and the node SMILES has stereochemistry.
<img width="500" alt="{927AC9FF-DBC9-4A19-9E6E-0EDD3B08C7AC}.png" src="attachments/69ea29bc-c2d2-4cd2-8e98-aae5c5737f69">

When a user does a prediction on a model's page it shows at the top of the list. This did not require any new fields as the entered SMILES does not get saved anywhere.
<img width="500" alt="{BED66F12-5F07-419E-AAA6-FE1FE5B4F266}.png" src="attachments/5fcc3a9b-4d1a-4e48-acac-76b7571f6507">

I think the alert box is an alright solution but if you have a great idea for something that looks/fits better please change it or let me know.

Co-authored-by: Tim Lorsbach <tim@lorsba.ch>
Reviewed-on: enviPath/enviPy#250
Co-authored-by: Liam Brydon <lbry121@aucklanduni.ac.nz>
Co-committed-by: Liam Brydon <lbry121@aucklanduni.ac.nz>
2025-12-03 10:19:34 +13:00

128 lines
4.3 KiB
Python

from django.conf import settings as s
from django.test import TestCase, override_settings
from django.urls import reverse
from epdb.logic import UserManager
from epdb.models import User
Package = s.GET_PACKAGE_MODEL()
@override_settings(MODEL_DIR=s.FIXTURE_DIRS[0] / "models", CELERY_TASK_ALWAYS_EAGER=True)
class ModelViewTest(TestCase):
fixtures = ["test_fixtures_incl_model.jsonl.gz"]
@classmethod
def setUpClass(cls):
super(ModelViewTest, cls).setUpClass()
cls.user1 = UserManager.create_user(
"user1",
"user1@envipath.com",
"SuperSafe",
set_setting=True,
add_to_group=True,
is_active=True,
)
cls.user1_default_package = cls.user1.default_package
cls.model_package = Package.objects.get(name="Fixtures")
def setUp(self):
self.client.force_login(self.user1)
def test_predict(self):
self.client.force_login(User.objects.get(username="admin"))
response = self.client.get(
reverse(
"package model detail",
kwargs={
"package_uuid": str(self.model_package.uuid),
"model_uuid": str(self.model_package.models.first().uuid),
},
),
{
"classify": "ILikeCats!",
"smiles": "CCN(CC)C(=O)C1=CC(=CC=C1)CO",
},
)
expected = [
{
"products": [["O=C(O)C1=CC(CO)=CC=C1", "CCNCC"]],
"probability": 0.25,
"btrule": {
"url": "http://localhost:8000/package/1869d3f0-60bb-41fd-b6f8-afa75ffb09d3/simple-ambit-rule/0e6e9290-b658-4450-b291-3ec19fa19206",
"name": "bt0430-4011",
},
},
{
"products": [["CCNC(=O)C1=CC(CO)=CC=C1", "CC=O"]],
"probability": 0.0,
"btrule": {
"url": "http://localhost:8000/package/1869d3f0-60bb-41fd-b6f8-afa75ffb09d3/simple-ambit-rule/27a3a353-0b66-4228-bd16-e407949e90df",
"name": "bt0243-4301",
},
},
{
"products": [["CCN(CC)C(=O)C1=CC(C=O)=CC=C1"]],
"probability": 0.75,
"btrule": {
"url": "http://localhost:8000/package/1869d3f0-60bb-41fd-b6f8-afa75ffb09d3/simple-ambit-rule/2f2e0c39-e109-4836-959f-2bda2524f022",
"name": "bt0001-3568",
},
},
]
actual = response.json()["pred"]
self.assertEqual(actual, expected)
response = self.client.get(
reverse(
"package model detail",
kwargs={
"package_uuid": str(self.model_package.uuid),
"model_uuid": str(self.model_package.models.first().uuid),
},
),
{
"classify": "ILikeCats!",
"smiles": "",
},
)
self.assertEqual(response.status_code, 400)
self.assertEqual(response.json()["error"], "Received empty SMILES")
response = self.client.get(
reverse(
"package model detail",
kwargs={
"package_uuid": str(self.model_package.uuid),
"model_uuid": str(self.model_package.models.first().uuid),
},
),
{
"classify": "ILikeCats!",
"smiles": " ", # Input should be stripped
},
)
self.assertEqual(response.status_code, 400)
self.assertEqual(response.json()["error"], "Received empty SMILES")
response = self.client.get(
reverse(
"package model detail",
kwargs={
"package_uuid": str(self.model_package.uuid),
"model_uuid": str(self.model_package.models.first().uuid),
},
),
{
"classify": "ILikeCats!",
"smiles": "RandomInput",
},
)
self.assertEqual(response.status_code, 400)
self.assertEqual(response.json()["error"], '"RandomInput" is not a valid SMILES')