forked from enviPath/enviPy
[Feature] Eval package evaluation
`evaluate_model` in `PackageBasedModel` and `EnviFormer` now use evaluation packages if any are present instead of the random splits. Co-authored-by: Liam Brydon <62733830+MyCreativityOutlet@users.noreply.github.com> Reviewed-on: enviPath/enviPy#148 Co-authored-by: liambrydon <lbry121@aucklanduni.ac.nz> Co-committed-by: liambrydon <lbry121@aucklanduni.ac.nz>
This commit is contained in:
@ -24,7 +24,7 @@ class ModelTest(TestCase):
|
||||
|
||||
rule_package_objs = [self.BBD_SUBSET]
|
||||
data_package_objs = [self.BBD_SUBSET]
|
||||
eval_packages_objs = []
|
||||
eval_packages_objs = [self.BBD_SUBSET]
|
||||
|
||||
mod = MLRelativeReasoning.create(
|
||||
self.package,
|
||||
@ -52,7 +52,7 @@ class ModelTest(TestCase):
|
||||
mod.build_model()
|
||||
mod.multigen_eval = True
|
||||
mod.save()
|
||||
# mod.evaluate_model()
|
||||
mod.evaluate_model()
|
||||
|
||||
results = mod.predict('CCN(CC)C(=O)C1=CC(=CC=C1)C')
|
||||
|
||||
|
||||
Reference in New Issue
Block a user